Aufgaben:Aufgabe 3.4: Entropie für verschiedene Wahrscheinlichkeiten: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
Zeile 72: Zeile 72:
 
(0.7-p_3) \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{0.7-p_3} \hspace{0.05cm}$$.
 
(0.7-p_3) \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{0.7-p_3} \hspace{0.05cm}$$.
  
Die zweite Funktion ist für $p-3 = p_4 = 0.35$ Ein ähnlicher Zusammenhang hat sich bei der [http://www.lntwww.de/Informationstheorie/Ged%C3%A4chtnislose_Nachrichtenquellen#Bin.C3.A4re_Entropiefunktion Binäre Entropiefunktion] ergeben. Damit erhält man
+
Die zweite Funktion ist für $p-3 = p_4 = 0.35$ Ein ähnlicher Zusammenhang hat sich bei der [http://www.lntwww.de/Informationstheorie/Ged%C3%A4chtnislose_Nachrichtenquellen#Bin.C3.A4re_Entropiefunktion Binäre Entropiefunktion] ergeben. Damit erhält man :
 +
 
 +
$$H_{\rm b2}(X) = 2 \cdot
 +
p_3 \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{p_3} =
 +
0.7 \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{0.35} = 1.060$$
 +
 
 +
$$\Rightarrow \hspace{0.3cm} H_{\rm b}(X) = H_{\rm b1}(X) + H_{\rm b2}(X) = 0.797 + 1.060 \hspace{0.15cm} \underline {= 1.857}  \hspace{0.05cm}$$.
 +
 
 +
 
 +
'''3.''' Analog zur Aufgabe (b) ergibt sich mit $p_1 = 0.1$, $p_4 = 0.4$ das Maximum für $p_2 = p_3 = p_3 = 0.25$ :
 +
 
 +
$$H_{\rm c}(X) =
 +
0.1 \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{0.1} +
 +
2 \cdot 0.25 \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{0.25} +
 +
0.4 \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{0.4}
 +
\hspace{0.15cm} \underline {= 1.861}  \hspace{0.05cm}$$.
 +
 
 +
 
 +
'''4.''' Die maximale Entropie für den Symbolumfang $M=4$ ergibt sich bei gleichen Wahrscheinlichkeiten ( $p_1 = p_2 = p_3 = p_4 = 0.25$):
 +
 
 +
$$H_{\rm max}(X) =
 +
{\rm log}_2 \hspace{0.1cm} M
 +
\hspace{0.15cm} \underline {= 2}  \hspace{0.05cm}$$.
 +
 
 +
Die Differenz der Entropien entsprechend (d) und (c) ergibt $\triangle H(X) = 0.139 bit$.  Hierbei gilt:
 +
 
 +
$$\Delta H(X) = 1-
 +
0.1 \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{0.1} -
 +
0.4 \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{0.4}
 +
\hspace{0.05cm}$$.
 +
 
 +
Mit der binären Entropiefunktion
 +
 
 +
$$H_{\rm bin}(p) =
 +
p \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{p} +
 +
(1-p) \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{1-p}$$
 +
 
 +
lässt sich hierfür auch schreiben:
 +
 
 +
$$\Delta H(X) = 0.5 \cdot \left [ 1- H_{\rm bin}(0.2) \right ] =
 +
0.5 \cdot \left [ 1- 0.722 \right ] = 0.139
 +
\hspace{0.05cm}$$.
 +
 
 +
 
 +
 
 +
 
 +
 +
 
 +
 
  
'''3.'''
 
'''4.'''
 
'''5.'''
 
'''6.'''
 
'''7.'''
 
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  

Version vom 24. November 2016, 19:04 Uhr

P ID2758 Inf Z 3 3.png

In der ersten Zeile der nebenstehenden Tabelle ist die mit „a” bezeichnete Wahrscheinlichkeitsfunktion angegeben. Für dieses $P_X(X)$ soll soll in der Teilaufgabe (a) die Entropie

$$H_{\rm a}(X) = {\rm E} \left [ {\rm log}_2 \hspace{0.1cm} \frac{1}{P_{X}(X)}\right ]$$

berechnet werden. Da hier der Logarithmus zur Basis 2 verwendet wird, ist die Pseudo–Einheit „bit” anzufügen.

In den weiteren Aufgaben sollen jeweils einige Wahrscheinlichkeiten variiert werden und zwar derart, dass sich jeweils die größtmögliche Entropie ergibt:

  • Durch geeignete Variation von $p_3$ und $p_4$ kommt man zur maximalen Entropie $H_b(X)$ unter der Voraussetzung $p_1 = 0.1$ und $p_2 = 0.2$ $\Rightarrow$ Teilaufgabe (b).
  • Durch geeignete Variation von $p_2$ und $p_3$ kommt man zur maximalen Entropie $H_c(X)$ unter der Voraussetzung $p_1 = 0.1$ und $p_4 = 0.4$ $\Rightarrow$ Teilaufgabe (c).
  • In der Teilaufgabe (d) sind alle vier Parameter zur Variation freigegeben, die entsprechend der maximalen Entropie $\Rightarrow$ $H_{max}(X)$ zu bestimmen sind.

Hinweis: Die Aufgabe bezieht sich auf das Kapitel 3.1




Fragebogen

1

Zu welcher Entropie führt $P_X(X) = [ 0.1, 0.2, 0.3, 0.4]$ ?

$H_a(X)$ =

$bit$

2

Es gelte allgemein $P_X(X) = [ 0.1, 0.2, p_3, p_4]$. Welche Entropie erhält man, wenn $p_3$ und $p_4$ bestmöglich gewählt werden?

$H_b(X)$ =

$bit$

3

Nun gelte $P_X(X) = [ 0.1, p_2, p_3, 0.4]$. Welche Entropie erhält man, wenn $p_2$ und $p_3$ bestmöglich gewählt werden?

$H_c(X)$ =

$bit$

4

Welche Entropie erhält man, wenn ($p_1$, $p_2$,$p_3$ und $p_4$) bestmöglich gewählt werden Können ?

$H_{max}(X)$ =

$bit$


Musterlösung

1. Mit $P_X(X) = [ 0.1, 0.2, 0.3, 0.4]$ erhält man für die Entropie:

$$H_{\rm a}(X) = 0.1 \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{0.1} + 0.2 \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{0.2} + 0.3 \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{0.3} + 0.4 \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{0.4} \hspace{0.15cm} \underline {= 1.846} \hspace{0.05cm}$$.

Hier (und bei den anderen Aufgaben) ist jeweils die Pseudo–Einheit „bit” anzufügen.

2. Die Entropie $H_b (X)$ sich als Summe zweier Anteile $H_{b1}(X)$ und $H_{b2}(X)$ darstellen, mit:

$$H_{\rm b1}(X) = 0.1 \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{0.1} + 0.2 \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{0.2} = 0.797 \hspace{0.05cm}$$

$$H_{\rm b2}(X) = p_3 \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{p_3} + (0.7-p_3) \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{0.7-p_3} \hspace{0.05cm}$$.

Die zweite Funktion ist für $p-3 = p_4 = 0.35$ Ein ähnlicher Zusammenhang hat sich bei der Binäre Entropiefunktion ergeben. Damit erhält man :

$$H_{\rm b2}(X) = 2 \cdot p_3 \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{p_3} = 0.7 \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{0.35} = 1.060$$

$$\Rightarrow \hspace{0.3cm} H_{\rm b}(X) = H_{\rm b1}(X) + H_{\rm b2}(X) = 0.797 + 1.060 \hspace{0.15cm} \underline {= 1.857} \hspace{0.05cm}$$.


3. Analog zur Aufgabe (b) ergibt sich mit $p_1 = 0.1$, $p_4 = 0.4$ das Maximum für $p_2 = p_3 = p_3 = 0.25$ :

$$H_{\rm c}(X) = 0.1 \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{0.1} + 2 \cdot 0.25 \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{0.25} + 0.4 \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{0.4} \hspace{0.15cm} \underline {= 1.861} \hspace{0.05cm}$$.


4. Die maximale Entropie für den Symbolumfang $M=4$ ergibt sich bei gleichen Wahrscheinlichkeiten ( $p_1 = p_2 = p_3 = p_4 = 0.25$):

$$H_{\rm max}(X) = {\rm log}_2 \hspace{0.1cm} M \hspace{0.15cm} \underline {= 2} \hspace{0.05cm}$$.

Die Differenz der Entropien entsprechend (d) und (c) ergibt $\triangle H(X) = 0.139 bit$. Hierbei gilt:

$$\Delta H(X) = 1- 0.1 \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{0.1} - 0.4 \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{0.4} \hspace{0.05cm}$$.

Mit der binären Entropiefunktion

$$H_{\rm bin}(p) = p \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{p} + (1-p) \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{1-p}$$

lässt sich hierfür auch schreiben:

$$\Delta H(X) = 0.5 \cdot \left [ 1- H_{\rm bin}(0.2) \right ] = 0.5 \cdot \left [ 1- 0.722 \right ] = 0.139 \hspace{0.05cm}$$.