Aufgaben:Aufgabe 3.5Z: Nochmals Kullback-Leibler-Distanz: Unterschied zwischen den Versionen
Safwen (Diskussion | Beiträge) |
Safwen (Diskussion | Beiträge) |
||
Zeile 79: | Zeile 79: | ||
===Musterlösung=== | ===Musterlösung=== | ||
{{ML-Kopf}} | {{ML-Kopf}} | ||
− | '''1.''' | + | |
− | '''2.''' | + | '''1.'''Bei gleichen Wahrscheinlichkeiten gilt mit $M = 4$ : |
+ | |||
+ | $H(X) = log_2 M = 2 (bit)$ | ||
+ | |||
+ | '''2.''' Die Wahrscheinlichkeiten für die empirisch ermittelten Zufallsgrößen $Y$ weichen im Allgemeinen (nicht immer!) von der Gleichverteilung um so mehr ab, je kleiner der Parameter $N$ ist. Man erhält | ||
+ | :* $N = 1000 \Rightarrow P_Y(Y) = [0.225, 0.253, 0.250, 0.272]$ : | ||
+ | |||
+ | $H(Y) = 0.225 . log_2 \frac{1}{0.225} +0.253. log_2 \frac{1}{0.253} + 0.250 . log_2 \frac{1}{0.250}+ 0.272 . log_2 \frac{1}{0.272} = 1.9968 (bit)$ | ||
+ | |||
'''3.''' | '''3.''' | ||
'''4.''' | '''4.''' |
Version vom 25. November 2016, 17:04 Uhr
Die Wahrscheinlichkeitsfunktion lautet:
$$P_Y(X) = [\hspace{0.03cm}0.25\hspace{0.03cm}, \hspace{0.03cm} 0.25\hspace{0.03cm},\hspace{0.03cm} 0.25 \hspace{0.03cm}, \hspace{0.03cm} 0.25\hspace{0.03cm}]\hspace{0.05cm}$$ Die Zufallsgröße $X$ ist also gekennzeichnet
- durch den Symbolumfang $M=4$,
- mit gleichen Wahrscheinlichkeiten.
Die Zufallsgröße $Y$ ist stets eine Näherung für $X$. Sie wurde per Simulation aus einer Gleichverteilung gewonnen, wobei jeweils nur $N$ Zufallswerte ausgewertet wurden. Das heißt: $P_Y(1)$,...,$P_Y(4)$ sind im herkömmlichen Sinn keine Wahrscheinlichkeiten. Sie beschreiben vielmehr relative Häufigkeiten.
Das Ergebnis der sechsten Versuchsreihe (mit $N=1000$) ird demnach durch die folgende Wahrscheinlichkeitsfunktion zusammengefasst:
$$P_Y(X) = [\hspace{0.05cm}0.225\hspace{0.05cm}, \hspace{0.05cm} 0.253\hspace{0.05cm},\hspace{0.05cm} 0.250 \hspace{0.05cm}, \hspace{0.05cm} 0.272\hspace{0.05cm}] \hspace{0.05cm}$$ Bei dieser Schreibweise ist bereits berücksichtigt, dass die Zufallsgrößen $X$ und $Y$ auf dem gleichen Alphabet $X =$ {1, 2, 3, 4} basieren.
Mit diesen Voraussetzungen gilt für die relative Entropie (englisch: Informational Divergence) zwischen den Wahrscheinlichkeitsfunktionen $P_X(.)$ und $P_Y(.)$ :
$D( P_X || P_Y) = E_X [ log_2 \frac{P_X(X)}{P_Y(Y)}] = \sum\limits_{\mu=1}^M P_X(\mu) . log_2 \frac{P_X(\mu)}{P_Y(\mu)}$
Man bezeichnet $D( P_X || P_Y)$ als Kullback–Leibler–Distanz. Diese ist ein Maß für die Ähnlichkeit zwischen den beiden Wahrscheinlichkeitsfunktionen $P_X(.)$ und $P_Y(.)$. Die Erwartungswertbildung geschieht hier hinsichtlich der (tatsächlich gleichverteilten) Zufallsgröße $X$. Dies wird durch die Nomenklatur $E_X[.]$ angedeutet.
Eine zweite Form der Kullback–Leibler–Distanz ergibt sich durch die Erwartungswertbildung hinsichtlich der Zufallsgröße $Y \Rightarrow E_Y[.]$:
$D( P_Y || P_X) = E_Y [ log_2 \frac{P_Y(Y)}{P_Y(Y)}] = \sum\limits_{\mu=1}^M P_Y(\mu) . log_2 \frac{P_Y(\mu)}{P_X(\mu)}$
Hinweis: Die Aufgabe bezieht sich auf das Kapitel 3.1 dieses Buches. Die Angaben der Entropie $H(Y)$ und der Kullback–Leibler–Distanz $D( P_X || P_Y)$ in obiger Grafik sind in „bit” zu verstehen. die mit „???" versehenen Felder sollen von Ihnen in dieser Aufgabe ergänzt werden.
Fragebogen
Musterlösung
1.Bei gleichen Wahrscheinlichkeiten gilt mit $M = 4$ :
$H(X) = log_2 M = 2 (bit)$
2. Die Wahrscheinlichkeiten für die empirisch ermittelten Zufallsgrößen $Y$ weichen im Allgemeinen (nicht immer!) von der Gleichverteilung um so mehr ab, je kleiner der Parameter $N$ ist. Man erhält
- $N = 1000 \Rightarrow P_Y(Y) = [0.225, 0.253, 0.250, 0.272]$ :
$H(Y) = 0.225 . log_2 \frac{1}{0.225} +0.253. log_2 \frac{1}{0.253} + 0.250 . log_2 \frac{1}{0.250}+ 0.272 . log_2 \frac{1}{0.272} = 1.9968 (bit)$
3. 4. 5. 6. 7.