Aufgabe 4.Zehn: QPSK–Kanalkapazität
Gegeben sind die AWGN–Kanalkapazitätsgrenzkurven für die Modulationsverfahren
- Binary Phase Shift Keying (BPSK),
- Quaternary Phase Shift Keying (4–PSK oder auch QPSK).
Die Kanalkapazitäten $C_\text{BPSK}$ und $C_\text{QPSK}$ geben gleichzeitig die maximale Coderate $R_{\rm max}$ an, mit der bei BPSK (bzw. QPSK) die Bitfehlerwahrscheinlichkeit $p_\text{B} ≡ 0$ mit geeigneter Kanalcodierung asymptotisch erreichbar ist.
Das obere Diagramm zeigt die Abhängigkeit von der Kenngröße $10 \cdot \lg (E_{\rm B}/{N_0})$ in $\rm dB$, wobei $E_{\rm B}$ die „Energie pro Informationsbit” angibt.
- Für große $E_{\rm B}/{N_0}$–Werte liefert die BPSK–Kurve die maximale Coderate $R ≈ 1$.
- Aus der QPSK–Kurve kann dagegen $R ≈ 2$ abgelesen werden.
Die Kapazitätskurven für digitalen Eingang (jeweils mit der Einheit „bit/Symbol”),
- grüne Kurve ⇒ $C_\text{BPSK} (E_{\rm B}/{N_0})$ und
- blaue Kurve ⇒ $C_\text{QPSK} (E_{\rm B}/{N_0})$
sollen in der Teilaufgabe (3) in Bezug gesetzt werden zu zwei Shannon–Grenzkurven, die jeweils für eine Gaußsche Eingangsverteilung gültig sind:
- $$C_1( E_{\rm B}/{N_0}) = {1}/{2} \cdot {\rm log}_2 \hspace{0.1cm} ( 1 + \frac { 2\cdot R \cdot E_{\rm B}}{N_0}) ,$$
- $$C_2( E_{\rm B}/{N_0}) = {\rm log}_2 \hspace{0.1cm} ( 1 + \frac { R \cdot E_{\rm B}}{N_0}) .$$
Die beiden Kurven geben gleichzeitig die maximale Coderate $R_{\rm max}$ an, mit der durch lange Kanalcodes eine fehlerfreie Übertragung entsprechend dem Kanalcodierungstheorem möglich ist. Natürlich gelten für $C_1( E_{\rm B}/{N_0})$ bzw. C2(EB/N0) unterschiedliche Randbedingungen. Welche, sollen Sie herausfinden.
Die Abszisse im unteren Diagramm ist dagegen 10 · lg (ES/N0) mit der „Energie pro Symbol” (ES). Zu erkennen ist, dass die beiden Endwerte gegenüber der oberen Darstellung nicht verändert werden:
- $$C_{\rm BPSK}( E_{\rm S}/{N_0} \to \infty) = C_{\rm BPSK}( E_{\rm B}/{N_0} \to \infty) = 1 \ \rm bit/Symbol,$$
- $$C_{\rm QPSK}( E_{\rm S}/{N_0} \to \infty) = C_{\rm QPSK}( E_{\rm B}/{N_0} \to \infty) = 2 \ \rm bit/Symbol.$$
Hinweise:
- Die Aufgabe gehört zum Kapitel AWGN–Kanalkapazität bei wertkontinuierlichem Eingang.
- Bezug genommen wird insbesondere auf die Seite Maximale Coderate für QAM-Strukturen.
Fragebogen
Musterlösung
(1) Die Grafik zeigt die Signalraumkonstellationen für
- Quaternary Phase Shift Keying (QPSK), und
- vierstufige Quadraturamplitudenmodulation (4–QAM).
Letztere wird auch als π/4–QPSK bezeichnet. Beide sind aus informationstheoretischer Sicht identisch ⇒ Antwort NEIN.
(2) Richtig ist der Lösungsvorschlag 1:
- Die 4–QAM kann man als zwei BPSK–Konstellationen in orthogonalen Ebenen betrachten, wobei die Energie pro Informationsbit (EB) in beiden Fällen gleich ist.
- Da entsprechend der Teilaufgabe (1) die 4–QAM mit der QSPK identisch ist, gilt tatsächlich:
- $$C_{\rm QPSK}( E_{\rm B}/{N_0}) = 2 \cdot C_{\rm BPSK}( E_{\rm B}/{N_0}).$$
(3) In der unteren Grafik sind die beiden angegebenen Shannon–Grenzkurven zusammen mit CBPSK(EB/N0) und CQPSK(EB/N0) skizziert:
- $$C_1( E_{\rm B}/{N_0}) = {1}/{2} \cdot {\rm log}_2 \hspace{0.1cm} ( 1 + \frac { 2 \cdot R \cdot E_{\rm B}}{N_0}) ,$$
- $$C_2( E_{\rm B}/{N_0}) = {\rm log}_2 \hspace{0.1cm} ( 1 + \frac { R \cdot E_{\rm B}}{N_0}) .$$
Man erkennt aus dieser Skizze:
- Die grün–gestrichelte Kurve C1(EB/N0) gilt für den AWGN–Kanal mit gaußverteiltem Eingang. Für die Coderate R =1 sind nach dieser Kurve 10 · lg(EB/N0) = 1.76 dB erforderlich. Für R = 2 benötigt man dagegen 10 · lg(EB/N0) = 5.74 dB.
- Die blau–gestrichelte Kurve C2(EB/N0) gibt die Shannon–Grenze für K = 2 parallele Gaußkanäle an. Hier benötigt man 10 · lg(EB/N0) = 0 dB für R = 1 bzw. 10 · lg(EB/N0) = 1.76 dB für R = 2.
- Die eindimensionale BPSK liegt im gesamten Bereich unterhalb von C1 und damit natürlich auch unterhalb von C2 > C1.
- Die zweidimensionale QPSK liegt erwartungsgemäß unter der für sie relevanten Grenzkurve C2. Sie liegt aber im unteren Bereich (bis nahezu 6 dB) oberhalb von C1.
⇒ Richtig sind also die Lösungsvorschläge 1, 2 und 4.
(4) Die CQPSK(ES/N0)–Kurve kann ebenfalls aus CBPSK(ES/N0) konstruiert werden und zwar
- zum einen durch Verdopplung:
- $$C_{\rm BPSK}(10 \cdot {\rm lg} \hspace{0.1cm}E_{\rm S}/{N_0}) \hspace{0.3cm}\Rightarrow \hspace{0.3cm} 2 \cdot C_{\rm BPSK}(10 \cdot {\rm lg} \hspace{0.1cm}E_{\rm S}/{N_0}) ,$$
- sowie durch eine Verschiebung um 3 dB nach rechts:
- $$C_{\rm QPSK}(10 \cdot {\rm lg} \hspace{0.1cm}E_{\rm S}/{N_0}) = 2 \cdot C_{\rm BPSK}(10 \cdot {\rm lg} \hspace{0.1cm}E_{\rm S}/{N_0} - 3\,{\rm dB}) .$$
Richtig sind die beiden ersten Lösungsvorschläge, wobei der zweite Vorschlag berücksichtigt, dass bei QPSK die Energie in einer Dimension nur ES/2 beträgt.