Aufgabe 2.12: Zur nichtkohärenten Demodulation
Wir betrachten ein AM–moduliertes Signal:
- $$ s(t) = q(t) \cdot \cos(\omega_{\rm T} \cdot t) \hspace{0.05cm}.$$
Den Empfänger erreicht aufgrund der Kanallaufzeit das Signal
- $$ r(t) = q(t) \cdot \cos(\omega_{\rm T} \cdot t + \Delta \phi_{\rm T}) \hspace{0.05cm}.$$
Die nebenstehende Anordnung erlaubt eine perfekte Demodulation – das heißt $v(t) = q(t)$ – ohne Kenntnis der Phase $Δϕ_T$, allerdings nur dann, wenn das Quellensignal $q(t)$ gewisse Voraussetzungen erfüllt.
Die beiden empfängerseitigen Trägersignale lauten:
- $$ z_{\rm 1, \hspace{0.08cm}E}(t) = 2 \cdot \cos(\omega_{\rm T} \cdot t) \hspace{0.05cm},$$
- $$ z_{\rm 2, \hspace{0.08cm}E}(t) = -2 \cdot \sin(\omega_{\rm T} \cdot t) \hspace{0.05cm}.$$
$\rm TP_1$ und $\rm TP_2$ bezeichnen zwei ideale Tiefpässe, deren Grenzfrequenz jeweils gleich der Trägerfrequenz $f_{\rm T}$ ist. Die nichtlineare Funktion $v = g(b)$ soll im Rahmen dieser Aufgabe ermittelt werden.
Als (digitale) Quellensignale werden betrachtet:
- das unipolare Rechtecksgnal $q_1(t)$ mit den dimensionslosen Amplitudenwerten $0$ und $3$,
- das bipolare Rechtecksignal $q_2(t)$ mit den dimensionslosen Amplitudenwerten $±3$.
Diese beiden Signale ergeben hinsichtlich $s(t)$ ein ASK–Signal bzw. ein BPSK–Signal.
Hinweise:
- Die Aufgabe gehört zum Kapitel WeitereAM–Variantenn.
- Bezug genommen wird insbesondere auf die Seite Inkohärente (nichtkohärente) Demodulation.
- Gegeben sind folgende trigonometrischen Umformungen:
- $$ \cos(\alpha) \cdot \cos(\beta) = 1/2 \cdot \big[ \cos(\alpha - \beta)+ \cos(\alpha + \beta) \big],$$
- $$ \sin(\alpha) \cdot \sin(\beta) = 1/2 \cdot \big[ \cos(\alpha - \beta)- \cos(\alpha + \beta) \big],$$
- $$ \sin(\alpha) \cdot \cos(\beta) = 1/2 \cdot \big[ \sin(\alpha - \beta)+ \sin(\alpha + \beta) \big] \hspace{0.05cm}.$$
Fragebogen
Musterlösung
- $$b_1(t) = q(t) \cdot \cos(\omega_{\rm T} \cdot t + \Delta \phi_{\rm T}) \cdot 2 \cdot \cos(\omega_{\rm T} \cdot t) = q(t) \cdot \cos(\Delta \phi_{\rm T})\hspace{0.05cm},$$
- $$ b_2(t) = q(t) \cdot \cos(\omega_{\rm T} \cdot t + \Delta \phi_{\rm T}) \cdot (-2) \cdot \sin(\omega_{\rm T} \cdot t) = q(t) \cdot \sin(\Delta \phi_{\rm T})\hspace{0.05cm}.$$
Richtig sind somit die erste und die vierte Antwort.
(2) Die Summe der Quadrate der beiden Teilsignale ergibt:
- $$ b(t) = b_1^2(t) + b_2^2(t)= q^2(t) \cdot \left( \cos^2(\Delta \phi_{\rm T})+ \sin^2(\Delta \phi_{\rm T})\right) = q^2(t)\hspace{0.05cm}.$$
Die möglichen Amplitudenwerte sind somit: $b_{\rm min}\hspace{0.15cm}\underline{ = 0},\hspace{0.3cm} b_{\rm max}\hspace{0.15cm}\underline{ =9}.$
(3) Richtig ist der zweite Lösungsvorschlag:
- $$v=g(b) = \sqrt{b} \hspace{0.3cm} \Rightarrow \hspace{0.3cm} v(t) = \sqrt{ q^2(t) } = q(t)\hspace{0.05cm}.$$
(4) Das Ergebnis $b(t) = q^2(t)$ – siehe Teilaufgabe (2) – führt hier zum Ergebnis: $b_{\rm min}\hspace{0.15cm}\underline{ = 9},\hspace{0.3cm} b_{\rm max}\hspace{0.15cm}\underline{ =9}.$
Dies zeigt, dass der hier betrachtete Demodulator nur dann funktioniert, wenn für alle Zeiten $q(t) ≥ 0$ oder $q(t) ≤ 0$ gilt und dies dem Empfänger auch bekannt ist.