Einige Vorbemerkungen zu zweidimensionalen Zufallsgrößen

Aus LNTwww
Wechseln zu:Navigation, Suche

Einführungsbeispiel zur statistischen Abhängigkeit von Zufallsgrößen

Wir gehen vom Experiment „Würfeln mit zwei Würfeln” aus, wobei beide Würfel unterscheidbar sind. Die untere Tabelle zeigt als Ergebnis die ersten $N$ = 18 Wurfpaare dieses exemplarischen Zufallsexperiments:

  • In Zeile 2 sind die Augenzahlen des roten Würfels ( $R$ ) angegeben. Der Mittelwert dieser begrenzten Folge $〈R_1, ... , R_{18}〉$ ist mit 3.39 etwas kleiner als der Erwartungswert E[R] = 3.5.
  • Die Zeile 3 zeigt die Augenzahlen des blauen Würfels ( $B$ ). Die Folge $〈B_1, ... , B_{18}〉$ hat mit 3.61 einen etwas größeren Mittelwert als die unbegrenzte Folge ⇒ $\text{E}[B]$ = 3.5.
  • Zeile 4 beinhaltet die Summe $S_ν = R_ν + B_ν$. Der Mittelwert der Folge $〈S_1, ... , S_{18}〉$ ist 3.39 + 3.61 = 7. Dieser ist hier (zufällig) gleich dem Erwartungswert $\text{E}[S] = \text{E}[R] + \text{E}[B]$.


Hinweis: Entsprechend der auf der nachfolgenden Seite erklärten Nomenklatur sind hier $R_ν$, $B_ν$ und $S_ν$ als Zufallsgrößen zu verstehen. Die Zufallsgröße $R_3$ = {1, 2, 3, 4, 5, 6} gibt beispielsweise die Augenzahl des roten Würfels beim dritten Wurf als Wahrscheinlichkeitsereignis an. Die Angabe „ $R_3$ = 6” sagt aus, dass bei der dokumentierten Realisierung der rote Würfel im dritten Wurf eine „6” gezeigt hat.

Nun stellt sich die Frage, zwischen welchen Zufallsgrößen es statistische Abhängigkeiten gibt:

  • Setzt man faire Würfel voraus, so bestehen zwischen den Folgen $〈R〉$ und $〈B〉$ – ob begrenzt oder unbegrenzt – keine statistischen Bindungen: Auch wenn man $R_ν$ kennt, sind für $B_ν$ weiterhin alle möglichen Augenzahlen 1, ... , 6 gleichwahrscheinlich.
  • Kennt man aber $S_ν$, so sind sowohl Aussagen über $R_ν$ als auch über $B_ν$ möglich. Aus $S_{11}$ = 12 (siehe obige Tabelle) folgt direkt $R_{11}$ = $B_{11}$ = 6 und die Summe $S_{15}$ = 2 zweier Würfel ist nur mit zwei Einsen möglich. Solche Abhängigkeiten bezeichnet man als deterministisch.
  • Aus $S_7$ = 10 lassen sich zumindest Bereiche für $R_7$ und $B_7$ angeben: $R_7$ ≥ 4, $B_7$ ≥ 4. Möglich sind dann nur die drei Wertepaare ( $R_7$ = 4 ) ∩ ( $B_7$ = 6 ), ( $R_7$ = 5 ) ∩ ( $B_7$ = 5 ) sowie ( $R_7$ = 6 ) ∩ ( $B_7$ = 4 ). Hier besteht zwar kein deterministischer Zusammenhang zwischen den Zufallsgrößen $S_ν$ und $R_ν$ (bzw. $B_ν$), aber eine so genannte statistische Abhängigkeit.
  • Solche statistische Abhängigkeiten gibt es für alle $S_ν$ ∈ {3, 4, 5, 6, 8, 9, 10, 11}. Ist dagegen die Summe $S_ν$ = 7, so kann daraus nicht auf $R_ν$ und $B_ν$ zurückgeschlossen werden. Für beide Würfel sind dann alle möglichen Augenzahlen (1, ... , 6) gleichwahrscheinlich. In diesem Fall bestehen auch keine statistischen Bindungen zwischen $S_ν$ und $R_ν$ bzw. $S_ν$ und $B_ν$.


Voraussetzungen und Nomenklatur

Im gesamten Kapitel 3 betrachten wir wertdiskrete Zufallsgrößen der Form

und verwenden folgende Nomenklatur:

  • Die Zufallsgröße selbst wird stets mit einem Großbuchstaben bezeichnet, und der Kleinbuchstabe $x$ weist auf eine mögliche Realisierung der Zufallsgröße $X$ hin.
  • Alle Realisierungen $x_μ$ (mit $μ$ = 1, ... , $M$) sind reellwertig. $M$ gibt den Symbolumfang (englisch: Symbol Set Size) von $X$ an. Anstelle von $M$ verwenden wir manchmal auch $|X|$.

Die Zufallsgröße $X$ kann zum Beispiel durch die Transformation $\Omega → X$ entstanden sein, wobei $\Omega$ für den Wahrscheinlichkeitsraum eines Zufallsexperiments steht. Die nachfolgende Grafik verdeutlicht eine solche Transformation:

Jedes Zufallsereignis $ω_i ∈ Ω$ wird eindeutig einem reellen Zahlenwert $x_μ ∈ X ⊂ ℝ$ zugeordnet. Im betrachteten Beispiel gilt für die Laufvariable 1 ≤ μ ≤ 4, das heißt, der Symbolumfang beträgt M = |X| = 4. Die Abbildung ist aber nicht eineindeutig: Die Realisierung x3 ∈ X könnte sich im Beispiel aus dem Elementarereignis ω4 ergeben haben, aber auch aus ω6 (oder aus einem anderen der unendlich vielen, in der Grafik nicht eingezeichneten Elementarereignisse ωi).

Oft verzichtet man auf die Indizierung sowohl der Elementarereignisse ωi als auch der Realisierungen xμ. Damit ergeben sich beispielsweise folgende Kurzschreibweisen:

Mit dieser Vereinbarung gilt für die Wahrscheinlichkeiten der diskreten Zufallsgröße:

Wahrscheinlichkeitsfunktion und Wahrscheinlichkeitsdichtefunktion

Wahrscheinlichkeitsfunktion und Entropie

Relative Entropie – Kullback–Leibler–Distanz

Verbundwahrscheinlichkeit und Verbundentropie

Aufgaben zu Kapitel 3.1