Aufgabe 4.4Z: Störabstand bei PCM
Die Grafik zeigt den Sinken–Störabstand $10 · lg ρ_υ$ bei Pulscodemodulation (PCM) im Vergleich zur analogen Zweiseitenband–Amplitudenmodulation, abgekürzt mit ZSB–AM. Für letztere gilt $ρ_υ = ξ$, wobei $$\xi = \frac{\alpha^2 \cdot P_{\rm S}}{N_0 \cdot f_{\rm N}} \hspace{0.05cm}.$$ folgende Systemparameter zusammenfasst:
- den frequenzunabhängigen Dämpfungsfaktor $α$ des Übertragungskanals,
- die Leistung $P_S$ des Sendsignals $s(t)$, auch kurz Sendeleistung genannt,
- die Nachrichtenfrequenz $f_N$ (Bandbreite) des cosinusförmigen Quellensignals $q(t)$,
- die Rauschleistungsdichte $N_0$ des AWGN–Rauschens.
Für das PCM–System wurde auf der Seite Einfluss von Übertragungsfehlern (4) folgende Näherung für das Sinken–SNR angegeben, die auch Bitfehler aufgrund des AWGN–Rauschens berücksichtigt: $$ \rho_{\upsilon}= \frac{1}{ 2^{-2N } + 4 \cdot p_{\rm B}} \hspace{0.05cm}.$$ Hierbei bezeichnet $N$ die Anzahl der Bit pro Abtastwert und pB die Bitfehlerwahrscheinlichkeit. Da $ξ$ bei digitaler Modulation auch als die Signalenergie pro Bit bezogen auf die Rauschleistungsdichte ($E_B/N_0$) interpretiert werden kann, gilt mit dem komplementären Gaußschen Fehlersignal $Q(x)$ näherungsweise: $$ p_{\rm B}= {\rm Q} \left ( \sqrt{2 \xi }\right ) \hspace{0.05cm}.$$ Hinweis: Die Aufgabe bezieht sich auf das Kapitel 4.1 Bei der hier betrachteten PCM handelt es sich um die PCM 30/32, deren Systemparameter zum Beispiel in der Aufgabe A4.1 angegeben sind.
Fragebogen
Musterlösung
2. Aus der obigen Näherung erhält man für $N = 11 ⇒ M = 2048$ den Störabstand $66 dB$. Mit $N = 10 ⇒ M = 1024$ erreicht man nur ca. $60 dB$. Bei der Compact Disc (CD) werden die PCM–Parameter $N = 16 ⇒ M = 65536 ⇒ 10 · lg ρ_υ > 96 dB$ verwendet.
3. Bei Zweiseitenband–Amplitudenmodulation wären hierfür $10 · lg ξ = 40 dB$ erforderlich. Wie aus der Grafik auf der Angabenseite hervorgeht, ist dieser Abszissenwert für die vorgegebene PCM um $30 dB$ geringer ⇒ $10 · lg ξ_·{40 dB} = 10 dB$.
4. Der logarithmische Wert $30 dB$ entspricht einer um den $Faktor 10^3 = 1000$ reduzierten Leistung.
5. Aus der Grafik auf der Angabenseite erkennt man, dass der Abszissenwert $10 · lg ξ = 6 dB$ den Störabstand $20 dB$ zur Folge hat. Aus $10 · lg ρ_υ = 20 dB$ folgt $ρ_υ = 100$ und damit weiter (mit $N = 8$):
$$\rho_{\upsilon}= \frac{1}{ 2^{-2N } + 4 \cdot p_{\rm B}} \approx \frac{1}{ 1.5 \cdot 10^{-5} + 4 \cdot p_{\rm B}} = 100$$
$$\Rightarrow \hspace{0.3cm} p_{\rm B} = \frac{0.01 - 1.5 \cdot 10^{-5}}{ 4} \hspace{0.15cm}\underline {\approx 0.025} \hspace{0.05cm}.$$
6.Bei gleichem $ξ$ kann wieder mit der Bitfehlerwahrscheinlichkeit $p_B = 0.025$ gerechnet werden. Damit erhält man mit $N = 3$ (Bit pro Abtastwert) $$\rho_{\upsilon}= \frac{1}{ 2^{-6 } + 4 \cdot p_{\rm B}} = \frac{1}{ 0.015625 + 0.01} \approx 39 \hspace{0.3cm} \Rightarrow \hspace{0.3cm}10 \cdot {\rm lg} \hspace{0.15cm}\rho_{\upsilon}\hspace{0.15cm}\underline {\approx 15.9\,{\rm dB}} \hspace{0.05cm}.$$ Bei 3 Bit pro Abtastwert ist die Quantisierungsrauschleistung ($P_Q = 0.015625$) schon größer als die Fehlerrauschleistung ($P_F = 0.01$). Durch Erhöhung der Sendeleistung könnte wegen der Quantisierung der Sinkenstörabstand maximal 18 dB betragen, wenn keine Bitfehler vorkommen ($P_F = 0$).