Modulationsverfahren/Pulscodemodulation: Unterschied zwischen den Versionen
Zeile 379: | Zeile 379: | ||
*dem Lehrsoftwarepaket [http://www.lntwww.de/downloads/Sonstiges/Programme/LNTsim.zip LNTsim] ⇒ Link verweist auf die ZIP-Version des Programms und | *dem Lehrsoftwarepaket [http://www.lntwww.de/downloads/Sonstiges/Programme/LNTsim.zip LNTsim] ⇒ Link verweist auf die ZIP-Version des Programms und | ||
*dieser [http://www.lntwww.de/downloads/Sonstiges/Texte/Praktikum_LNTsim_Teil_B.pdf Praktikumsanleitung] ⇒ Link verweist auf die PDF-Version; Kapitel 12: Seite 271-294. | *dieser [http://www.lntwww.de/downloads/Sonstiges/Texte/Praktikum_LNTsim_Teil_B.pdf Praktikumsanleitung] ⇒ Link verweist auf die PDF-Version; Kapitel 12: Seite 271-294. | ||
− | + | ||
+ | ==Aufgaben zum Kapitel== | ||
+ | |||
+ | [[Aufgaben:4.1 PCM–System 30/32|Aufgabe 4.1: PCM–System 30/32]] | ||
+ | |||
+ | [[Aufgaben:4.2 Tiefpass zur Signalrekonstruktion|Aufgabe 4.2: Tiefpass zur Signalrekonstruktion]] | ||
+ | |||
+ | [[Aufgaben:4.2Z Zum Abtasttheorem|Zusatzaufgabe 4.2Z: Zum Abtasttheorem]] | ||
+ | |||
+ | [[Aufgaben:4.3 Natürliche und diskrete Abtastung|Aufgabe 4.3: Natürliche und diskrete Abtastung]] | ||
+ | |||
+ | [[Aufgaben:4.4 Zum Quantisierungsrauschen|Aufgabe 4.4: Zum Quantisierungsrauschen]] | ||
+ | |||
+ | [[Aufgaben:4.4Z Störabstand bei PCM|Zusatzaufgabe 4.4Z: Störabstand bei PCM]] | ||
+ | |||
+ | [[Aufgaben:4.5 Nichtlineare Quantisierung|Aufgabe 4.5: Nichtlineare Quantisierung]] | ||
+ | |||
+ | [[Aufgaben:4.6 Quantisierungskennlinien|Aufgabe 4.6: Quantisierungskennlinien]] | ||
{{Display}} | {{Display}} |
Version vom 20. Juli 2017, 16:34 Uhr
Das vierte Kapitel behandelt die digitalen Modulationsverfahren Amplitude Shift Keying (ASK), Phase Shift Keying (PSK) und Frequency Shift Keying (FSK) sowie einige davon abgeleitete Modifikationen. Die meisten der in den beiden letzten Kapiteln genannten Eigenschaften der analogen Modulationsverfahren gelten weiterhin. Unterschiede ergeben sich aus der nun erforderlichen Entscheiderkomponente des Empfängers.
Wir beschränken uns hier im wesentlichen auf die systemtheoretischen und übertragungstechnischen Aspekte. Die Fehlerwahrscheinlichkeit wird nur für ideale Bedingungen angegeben. Die Herleitungen und die Berücksichtigung nichtidealer Randbedingungen finden Sie im Buch „Digitalsignalübertragung”.
Weitere Informationen zum Thema sowie Aufgaben, Simulationen und Programmierübungen finden Sie im Versuch „Digitale Modulationsverfahren” des Praktikums „Simulation Digitaler Übertragungssysteme ”. Diese (ehemalige) LNT-Lehrveranstaltung an der TU München basiert auf
- dem Lehrsoftwarepaket LNTsim ⇒ Link verweist auf die ZIP-Version des Programms und
- der zugehörigen Praktikumsanleitung ⇒ Link verweist auf die PDF-Version.
Das erste Unterkapitel „Pulscodemodulation” ist wie folgt gegliedert:
Inhaltsverzeichnis
- 1 Prinzip und Blockschaltbild
- 2 Abtastung und Signalrekonstruktion
- 3 Natürliche und diskrete Abtastung
- 4 Frequenzbereichsbetrachtung der natürlichen Abtastung
- 5 Frequenzbereichsbetrachtung der diskreten Abtastung
- 6 Quantisierung und Quantisierungsrauschen
- 7 PCM–Codierung und –Decodierung
- 8 Signal–zu–Rausch–Leistungsverhältnis
- 9 Einfluss von Übertragungsfehlern
- 10 Abschätzung der SNR-Degradation durch Übertragungsfehler
- 11 Nichtlineare Quantisierung
- 12 Kompression und Expandierung
- 13 Aufgaben zum Kapitel
Prinzip und Blockschaltbild
Nahezu alle heute eingesetzten Modulationsverfahren arbeiten digital. Deren Vorteile wurden schon im ersten Kapitel dieses Buches genannt. Das erste Konzept zur digitalen Signalübertragung wurde bereits 1938 von Alec Reeves entwickelt und wird seit den 1960er Jahren unter dem Namen Pulscodemodulation (PCM) auch in der Praxis eingesetzt. Auch wenn sich viele der in den letzten Jahren konzipierten digitalen Modulationsverfahren von der PCM im Detail unterscheiden, so eignet sich diese doch sehr gut, um das Prinzip all dieser Verfahren zu erklären.
Die Aufgabe des PCM–Systems ist es,
- das analoge Quellensignal $q(t)$ in das Binärsignal $q_{\rm C}(t)$ umzusetzen – diesen Vorgang bezeichnet man auch als A/D–Wandlung,
- dieses Signal über den Kanal zu übertragen, wobei das empfängerseitige Signal $υ_{\rm C}(t)$ wegen des Entscheiders ebenfalls binär ist,
- schließlich aus dem Binärsignal $υ_{\rm C}(t)$ das analoge, wert– und zeitkontinuierliche Sinkensignal $υ(t)$ zu rekonstruieren ⇒ D/A–Wandlung.
Weiterhin ist zum obigen PCM–Blockschaltbild anzumerken:
- Der PCM–Sender (bzw. der A/D–Wandler) setzt sich aus den drei Funktionsblöcken Abtastung – Quantisierung – PCM–Codierung zusammen, die in den nächsten Abschnitten noch im Detail beschrieben werden.
- Der grau hinterlegte Block zeigt das digitale Übertragungssystem mit digitalem Sender und Empfänger (letzterer beinhaltet auch einen Entscheider), sowie dem analogen Übertragungskanal, gekennzeichnet durch den Frequenzgang $H_{\rm K}(f)$ und die Rauschleistungsdichte ${\it Φ}_n(f)$.
- Dieser Block wird in den ersten drei Kapiteln des Buches Digitalsignalübertragung eingehend behandelt. Im Kapitel 5 des gleichen Buches finden Sie auch digitale Kanalmodelle, die das Übertragungsverhalten anhand der Binärsignale $q_{\rm C}(t)$ und $v_{\rm C}(t)$ phänomenologisch beschreiben.
- Weiter erkennt man aus dem Blockschaltbild, dass es für die Quantisierung empfängerseitig keine Entsprechung gibt. Deshalb wird sich auch bei fehlerfreier Übertragung, also für $v_{\rm C}(t) = q_{\rm C}(t)$, das analoge Sinkensignal $v(t)$ vom Quellensignal $q(t)$ unterscheiden.
- Als Maß für die Qualität des (digitalen) Übertragungssystems verwenden wir das Signal-zu-Stör-Leistungsverhältnis ⇒ kurz: Sinken–SNR als der Quotient der Leistungen von Nutzsignal $q(t)$ und Fehlersignal $ε(t) = v(t) – q(t)$:
- $$\rho_{v} = \frac{P_q}{P_\varepsilon}\hspace{0.3cm} {\rm mit}\hspace{0.3cm}P_q = \overline{q(t)^2}, \hspace{0.2cm}P_\varepsilon = \overline{[v(t) - q(t)]^2}\hspace{0.05cm}.$$
- Hierbei ist ideale Amplitudenanpassung vorausgesetzt, so dass im Idealfall (das heißt: Abtastung gemäß dem Abtasttheorem, bestmögliche Signalrekonstruktion, unendlich feine Quantisierung) das Sinkensignal $v(t)$ mit dem Quellensignal $q(t)$ exakt übereinstimmen würde.
Wir möchten Sie bereits hier auf das 3–teilige Lernvideo Pulscodemodulation hinweisen, das alle Aspekte der PCM beinhaltet. Das Prinzip wird im ersten Teil des Videos ausführlich erläutert.
Abtastung und Signalrekonstruktion
Die Abtastung – also die Zeitdiskretisierung des Analogsignals $q(t)$ – wurde im Kapitel Zeitdiskrete Signaldarstellung des Buches „Signaldarstellung” ausführlich behandelt. Hier folgt eine Kurzzusammenfassung dieses Abschnitts.
Die Grafik verdeutlicht die Abtastung im Zeitbereich. Das (blaue) Signal $q(t)$ ist zeitkontinuierlich und das im Abstand $T_{\rm A}$ abgetastete (grüne) Signal $q_{\rm A}(t)$ zeitdiskret. Dabei gilt:
- Die Abtastung lässt sich durch die Multiplikation des Analogsignals $q(t)$ mit dem Diracpuls im Zeitbereich $p_δ(t)$ darstellen:
- $$q_{\rm A}(t) = q(t) \cdot p_{\delta}(t)\hspace{0.3cm} {\rm mit}\hspace{0.3cm}p_{\delta}(t)= \sum_{\nu = -\infty}^{\infty}T_{\rm A}\cdot \delta(t - \nu \cdot T_{\rm A}) \hspace{0.05cm}.$$
- Das Gewicht der Diracfunktion bei $t = ν · T_{\rm A}$ ist gleich $T_{\rm A} · q(ν · T_{\rm A})$. Da die Diracfunktion $δ(t)$ die Einheit $\rm 1/s$ aufweist, hat somit $q_{\rm A}(t)$ die gleiche Einheit wie $q(t)$, zum Beispiel „V”.
- Die Fouriertransformierte des Diracpulses ist ebenfalls ein Diracpuls (im Frequenzbereich), wobei der Abstand der einzelnen Diraclinien $f_{\rm A} = 1/T_{\rm A}$ beträgt. Alle Impulsgewichte von $P_δ(f)$ sind $1$:
- $$p_{\delta}(t)= \sum_{\nu = -\infty}^{+\infty}T_{\rm A}\cdot \delta(t - \nu \cdot T_{\rm A}) \hspace{0.2cm}\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\, \hspace{0.2cm} P_{\delta}(f)= \sum_{\mu = -\infty}^{+\infty} \delta(f - \mu \cdot f_{\rm A}) \hspace{0.05cm}.$$
- Das Spektrum $Q_{\rm A}(f)$ des abgetasteten Signals ergibt sich aus dem Faltungssatz, wobei $Q(f)$ das kontinuierliche Spektrum des Analogsignals $q(t)$ bezeichnet:
- $$Q_{\rm A}(f) = Q(f) \star P_{\delta}(f)= \sum_{\mu = -\infty}^{+\infty} Q(f - \mu \cdot f_{\rm A}) \hspace{0.05cm}.$$
Wir weisen Sie hier auf Teil 2 des Lernvideos Pulscodemodulation hin, das die Abtastung und die Signalrekonstruktion systemtheoretisch erklärt.
$\text{Beispiel 1:}$ Die obere Grafik zeigt schematisch das Spektrum $Q(f)$ eines analogen Quellensignals $q(t)$ mit Frequenzen bis $f_{\rm N, max} = 5 \ \rm kHz$.
- Tastet man das Signal mit der Abtastrate $f_{\rm A} = 20 \ \rm kHz$ (also im jeweiligen Abstand $T_{\rm A} = 50 \ \rm μs$) ab, so erhält man das grün skizzierte periodische Spektrum $Q_{\rm A}(f)$.
- Da die Diracfunktionen unendlich schmal sind, beinhaltet $q_{\rm A}(t)$ auch beliebig hochfrequente Anteile und dementsprechend ist $Q_{\rm A}(f)$ bis ins Unendliche ausgedehnt (mittlere Grafik).
- Darunter (rot) gezeichnet ist das Spektrum $Q_{\rm A}(f)$ für die Abtastparameter $T_{\rm A} = 100 \ \rm μs$ ⇒ $f_{\rm A} = 10 \ \rm kHz$.
Aus diesem Beispiel lassen sich folgende wichtige Erkenntnisse bezüglich der Abtastung gewinnen:
- Beinhaltet $Q(f)$ Frequenzen bis $f_\text{N, max}$, so muss nach dem Abtasttheorem die Abtastrate $f_{\rm A} ≥ 2 · f_{\rm N, max}$ gewählt werden. Bei kleinerer Abtastrate $f_{\rm A}$ (also größerem Abstand $T_{\rm A}$) kommt es zu Überlappungen der periodifizierten Spektren und damit zu irreversiblen Verzerrungen.
- Gilt exakt $f_{\rm A} = 2 · f_\text{N, max}$ wie in der unteren Grafik des obigen Beispiels, so kann $Q(f)$ aus $Q_{\rm A}(f)$ – bzw. im PCM–System $V(f)$ aus $V_{\rm Q}(f)$ – durch einen idealen rechteckförmigen Tiefpass $H(f)$ mit der Grenzfrequenz $f_{\rm G} = f_{\rm A}/2$ vollständig rekonstruiert werden.
- Erfolgt dagegen die Abtastung mit $f_{\rm A} > 2 · f_\text{N, max}$ wie in der mittleren Grafik des Beispiels, so kann empfängerseitig zur Signalrekonstruktion auch ein Tiefpass $H(f)$ mit kleinerer Flankensteilheit verwendet werden, solange die folgende Bedingung erfüllt ist:
- $$H(f) = \left\{ \begin{array}{l} 1 \\ 0 \\ \end{array} \right.\quad \begin{array}{*{5}c}{\rm{f\ddot{u}r}} \\{\rm{f\ddot{u}r}} \\ \end{array}\begin{array}{*{10}c} {\hspace{0.04cm}\left| \hspace{0.005cm} f\hspace{0.05cm} \right| \le f_{\rm N, \hspace{0.05cm}max},} \\ {\hspace{0.04cm}\left|\hspace{0.005cm} f \hspace{0.05cm} \right| \ge f_{\rm A}- f_{\rm N, \hspace{0.05cm}max}.} \\ \end{array}$$
Natürliche und diskrete Abtastung
Die Multiplikation mit dem Diracpuls liefert nur eine idealisierte Beschreibung der Abtastung, da eine Diracfunktion (Dauer $T_{\rm R} → 0$, Höhe $1/T_{\rm R} → ∞$) nicht realisierbar ist. In der Praxis muss der Diracpuls $p_δ(t)$ zum Beispiel durch einen Rechteckpuls $$p_{\rm R}(t)= \sum_{\nu = -\infty}^{+\infty}g_{\rm R}(t - \nu \cdot T_{\rm A})\hspace{0.3cm} {\rm mit}\hspace{0.3cm} g_{\rm R}(t) = \left\{ \begin{array}{l} 1 \\ 1/2 \\ 0 \\ \end{array} \right.\quad \begin{array}{*{5}c}{\rm{f\ddot{u}r}}\\{\rm{f\ddot{u}r}} \\{\rm{f\ddot{u}r}} \\ \end{array}\begin{array}{*{10}c}{\hspace{0.04cm}\left|\hspace{0.06cm} t \hspace{0.05cm} \right|} < T_{\rm R}/2\hspace{0.05cm}, \\{\hspace{0.04cm}\left|\hspace{0.06cm} t \hspace{0.05cm} \right|} = T_{\rm R}/2\hspace{0.05cm}, \\ {\hspace{0.005cm}\left|\hspace{0.06cm} t \hspace{0.05cm} \right|} > T_{\rm R}/2\hspace{0.05cm} \\ \end{array}$$ ersetzt werden, wobei die Rechteckimpulsdauer $T_{\rm R}$ deutlich kleiner als der Abtastabstand $T_{\rm A}$ sein sollte.
Die Grafik zeigt oben den Rechteckpuls $p_{\rm R}(t)$. Darunter sind zwei verschiedene Abtastverfahren mit diesem Rechteckpuls dargestellt:
- Bei der natürlichen Abtastung ergibt sich das abgetastete Signal $q_{\rm A}(t)$ durch die Multiplikation von $q(t)$ mit $p_{\rm R}(t)$. In den Bereichen $p_{\rm R}(t) = 1$ hat somit $q_{\rm A}(t)$ den gleichen Verlauf wie $q(t)$.
- Dagegen wird bei der diskreten Abtastung das analoge Signal $q(t)$ – zumindest gedanklich – zuerst mit dem Diracpuls $p_δ(t)$ multipliziert und danach wird jeder Diracimpuls $T_{\rm A} · δ(t - ν · T_{\rm A})$ durch einen Rechteckimpuls $g_{\rm R}(t - ν · T_{\rm A})$ ersetzt.
Hier und bei der nachfolgenden Frequenzbereichsbetrachtung ist zur Vereinfachung eine akausale Beschreibungsform gewählt. Für eine (kausale) Realisierung müsste $g_{\rm R}(t) = 1$ im Bereich von $0$ bis $T_{\rm R}$ gelten, und nicht wie hier für $ \ -T_{\rm R}/2 < t < T_{\rm R}/2.$
Frequenzbereichsbetrachtung der natürlichen Abtastung
Die natürliche Abtastung lässt sich mit dem Faltungssatz im Spektralbereich wie folgt darstellen:
- $$q_{\rm A}(t) = p_{\rm R}(t) \cdot q(t) = \left [ \frac{1}{T_{\rm A}} \cdot p_{\rm \delta}(t) \star g_{\rm R}(t)\right ]\cdot q(t) \hspace{0.3cm} \Rightarrow \hspace{0.3cm}Q_{\rm A}(f) = \left [ P_{\rm \delta}(f) \cdot \frac{1}{T_{\rm A}} \cdot G_{\rm R}(f) \right ] \star Q(f) = P_{\rm R}(f) \star Q(f)\hspace{0.05cm}.$$
Die Grafik zeigt das Ergebnis für
- ein (unrealistisches) rechteckförmiges Spektrum $Q(f) = Q_0$, das auf den Bereich $|f| ≤ 4 \ \rm kHz$ begrenzt ist,
- die Abtastrate $f_{\rm A} = 10 \ \rm kHz$ ⇒ $T_{\rm A} = 100 \ \rm μs$, sowie
- die Rechteckimpulsdauer $T_{\rm R} = 25 \ \rm μs$ ⇒ $T_{\rm R}/T_{\rm A} = 0.25$.
Man erkennt aus dieser Darstellung:
- Das Spektrum $P_{\rm R}(f)$ bei natürlicher Abtastung ist im Gegensatz zu $P_δ(f)$ kein Diracpuls (alle Gewichte gleich $1$), sondern die Gewichte sind hier mit der Funktion $G_{\rm R}(f)/T_{\rm A} = T_{\rm R}/T_{\rm A} · {\rm si}(πfT_{\rm R})$ bewertet. Auf Grund der Nullstelle der si–Funktion verschwinden die Diraclinien bei $±4f_{\rm A}$.
- Das Spektrum $Q_{\rm A}(f)$ ergibt sich aus der Faltung mit $Q(f)$. Das Rechteckspektrum um $f = 0$ hat die Höhe $T_{\rm R}/T_{\rm A} · Q_0$, die Anteile um $\mu · f_{\rm A} (\mu ≠ 0)$ sind weniger hoch.
- Verwendet man zur Signalrekonstruktion einen idealen, rechteckförmigen Tiefpass
- $$H(f) = \left\{ \begin{array}{l} T_{\rm A}/T_{\rm R} = 4 \\ 0 \\ \end{array} \right.\quad \begin{array}{*{5}c}{\rm{f\ddot{u}r}}\\{\rm{f\ddot{u}r}} \\ \end{array}\begin{array}{*{10}c} {\hspace{0.04cm}\left| \hspace{0.005cm} f\hspace{0.05cm} \right| < f_{\rm A}/2}\hspace{0.05cm}, \\ {\hspace{0.04cm}\left| \hspace{0.005cm} f\hspace{0.05cm} \right| > f_{\rm A}/2}\hspace{0.05cm}, \\ \end{array}$$
- so gilt für das Ausgangsspektrum $V(f) = Q(f)$ und dementsprechend ist auch $v(t) = q(t)$.
$\text{Resümee:}$ Dieses Ergebnis kann wie folgt zusammengefasst werden:
- Bei natürlicher Abtastung kann zur Signalrekonstruktion wie bei der idealen Abtastung (mit einem Diracpuls) ein idealer rechteckförmiger Tiefpass verwendet werden.
- Allerdings muss zur Amplitudenanpassung im Durchlassbereich eine Verstärkung um den Faktor $T_{\rm A}/T_{\rm R}$ berücksichtigt werden.
Frequenzbereichsbetrachtung der diskreten Abtastung
Bei der diskreten Abtastung erfolgt – zumindest gedanklich – zunächst die Multiplikation des Diracpulses $p_δ(t)$ mit dem Quellensignal $q(t)$ und erst danach die Faltung mit dem Rechteckimpuls $g_{\rm R}(t)$:
- $$q_{\rm A}(t) = \left [ \frac{1}{T_{\rm A}} \cdot p_{\rm \delta}(t) \cdot q(t)\right ]\star g_{\rm R}(t) \hspace{0.3cm} \Rightarrow \hspace{0.3cm}Q_{\rm A}(f) = \left [ P_{\rm \delta}(f) \star Q(f) \right ] \cdot G_{\rm R}(f)/{T_{\rm A}} \hspace{0.05cm}.$$
Es ist unerheblich, aber durchaus zweckmäßig, dass hier der Faktor $1/T_{\rm A}$ zur Bewertungsfunktion $G_{\rm R}(f)$ hinzugefügt wurde. Damit gilt wieder $G_{\rm R}(f)/T_{\rm A} = T_{\rm R}/T_{\rm A} · {\rm si}(πfT_{\rm R}).$
Die obere Grafik zeigt (grün hinterlegt) die Spektralfunktion $P_δ(f) \star Q(f)$ nach idealer Abtastung. Bei diskreter Abtastung mit einem Rechteckpuls ergibt sich dagegen das Spektrum $Q_{\rm A}(f)$ entsprechend dem unteren Diagramm. Man erkennt:
- Jedes der unendlich vielen Teilspektren hat nun eine andere Form. Wichtig ist allerdings nur das Spektrum mit der Mitte bei der Frequenz $f = 0$, da alle anderen Spektralanteile empfängerseitig durch den Tiefpass der Signalrekonstruktion entfernt werden.
- Verwendet man für diesen Tiefpass wieder ein Rechteckfilter mit der Verstärkung um $T_{\rm A}/T_{\rm R}$ im Durchlassbereich, so erhält man für das Ausgangsspektrum: $V(f) = Q(f) \cdot {\rm si}(\pi f T_{\rm R}) \hspace{0.05cm}.$
$\text{Resümee:}$ Bei diskreter Abtastung und Rechteckfilterung kommt es zu Dämpfungsverzerrungen entsprechend der Bewertungsfunktion ${\rm si}(πfT_{\rm R})$. Diese sind um so stärker, je größer $T_{\rm R}$ ist. Nur im Grenzfall $T_{\rm R} → 0$ gilt ${\rm si}(πfT_{\rm R}) = 1$.
Allerdings können durch eine ideale Entzerrung diese linearen Dämpfungsverzerrungen vollständig kompensiert werden. Um $V(f) = Q(f)$ bzw. $v(t) = q(t)$ zu erhalten, muss hier gelten:
- $$H(f) = \left\{ \begin{array}{l} (T_{\rm A}/T_{\rm R})/{\rm si}(\pi f T_{\rm R}) \\ 0 \\ \end{array} \right.\quad\begin{array}{*{5}c}{\rm{f\ddot{u}r} }\\{\rm{f\ddot{u}r} } \\ \end{array}\begin{array}{*{10}c} {\hspace{0.04cm}\left \vert \hspace{0.005cm} f\hspace{0.05cm} \right \vert < f_{\rm A}/2}\hspace{0.05cm}, \\ {\hspace{0.04cm}\left \vert \hspace{0.005cm} f\hspace{0.05cm} \right \vert > f_{\rm A}/2} \\ \end{array}$$
Quantisierung und Quantisierungsrauschen
Die zweite Funktionseinheit Quantisierung des PCM–Senders dient der Wertediskretisierung. Hierzu wird der gesamte Wertebereich des analogen Quellensignals (zum Beispiel der Bereich $± q_{\rm max}$) in $M$ Intervalle aufgeteilt und jedem Abtastwert $q_{\rm A}(ν · T_{\rm A})$ wird anschließend ein Repräsentant $q_{\rm Q}(ν · T_{\rm A})$ des zugehörigen Intervalls (beispielsweise die Intervallmitte) zugewiesen.
$\text{Beispiel 2:}$ Die Grafik verdeutlicht die Quantisierung am Beispiel der Quantisierungsstufenzahl $M = 8$.
- Tatsächlich wird für $M$ in der Praxis wegen der anschließenden Binärcodierung stets eine Zweierpotenz gewählt.
- Jeder der durch Kreise markierten Abtastwerte $q_{\rm A}(ν · T_{\rm A})$ wird durch den dazugehörigen quantisierten Wert $q_0(ν · T_{\rm A})$ ersetzt.
- Die quantisierten Werte sind als Kreuze eingetragen.
Dieser Vorgang der Wertdiskretisierung ist allerdings mit einer irreversiblen Verfälschung verbunden. Die Verfälschung $ε_ν = q_{\rm Q}(ν · T_{\rm A}) \ – \ q_{\rm A}(ν · T_{\rm A})$ hängt dabei von der Quantisierungsstufenzahl $M$ ab. Es gilt:
$$|\varepsilon_{\nu}| < {1}/{2} \cdot2/M \cdot q_{\rm max}= {q_{\rm max}}/{M}\hspace{0.05cm}.$$
$\text{Definition:}$ Man bezeichnet den quadratischen Mittelwert der Fehlergröße $ε_ν$ als Quantisierungsrauschleistung:
- $$P_{\rm Q} = \frac{1}{2N+1 } \cdot\sum_{\nu = -N}^{+N}\varepsilon_{\nu}^2 \approx \frac{1}{N \cdot T_{\rm A} } \cdot \int_{0}^{N \cdot T_{\rm A} }\varepsilon(t)^2 \hspace{0.05cm}{\rm d}t \hspace{0.3cm} {\rm mit}\hspace{0.3cm}\varepsilon(t) = q_{\rm Q}(t) - q(t) \hspace{0.05cm}.$$
Hinweise:
- Zur Berechnung der Quantisierungsrauschleistung $P_{\rm Q}$ wird meist die angegebene Näherung der „Spontanquantisierung” verwendet. Wie oben skizziert lässt man dazu die Abtastung außer Betracht und bildet das Fehlersignal aus den beiden zeitkontinuierlichen Signalen $q_{\rm Q}(t)$ und $q(t)$.
- $P_{\rm Q}$ hängt auch vom Quellensignal $q(t)$ ab. Unter der Voraussetzung, dass $q(t)$ alle Werte zwischen $±q_{\rm max}$ mit gleicher Wahrscheinlichkeit annimmt und der Quantisierer genau für diesen Bereich ausgelegt ist, ergibt sich entsprechend Aufgabe 4.4:
- $$P_{\rm Q} = \frac{q_{\rm max}^2}{3 \cdot M^2 } \hspace{0.05cm}.$$
- Bei einem Sprach– oder Musiksignal können – wenn auch nur sehr selten – beliebig große Amplitudenwerte auftreten. In diesem Fall wird für $q_{\rm max}$ meist derjenige Amplitudenwert herangezogen, der nur zu $1\%$ aller Zeiten (betragsmäßig) überschritten wird.
PCM–Codierung und –Decodierung
Der Block PCM–Codierung dient der Umsetzung der zeitdiskreten (nach Abtastung) und wertdiskreten (nach Quantisierung mit $M$ Stufen) Signalwerte $q_{\rm Q}(ν · T_{\rm A})$ in eine Folge von $N = {\rm ld}(M)$ Binärwerte. Hierbei steht „ld” für den Logarithmus zur Basis 2 ⇒ $\rm log_2$” ⇒ Logarithmus dualis.
$\text{Beispiel 3:}$ Jeder Binärwert (jedes Bit) ist hier durch ein Rechteck der Dauer $T_{\rm B} = T_{\rm A}/N$ dargestellt, woraus sich das Signal $q_{\rm C}(t)$ ergibt.
Man erkennt:
- Es wird hier der Dualcode verwendet. Das bedeutet, dass die Quantisierungsintervalle $\mu$ von $0$ bis $M–1$ durchnummeriert und anschließend in einfacher Binärform geschrieben werden. Mit $M = 8$ gilt beispielsweise $\mu = 6$ ⇔ 110.
- Die drei Binärsymbole des codierten Signals $q_{\rm C}(t)$ ergeben sich, wenn man 0 durch L („Low”) und 1 durch H („High”) ersetzt. Im Beispiel erhält man so: HHL HHL LLH LHL HLH LHH.
- Die Bitdauer $T_{\rm B}$ ist hier um den Faktor $N = {\rm ld}(M) = 3$ kürzer als der Abtastabstand $T_{\rm A} = 1/f_{\rm A}$, und die Bitrate ist $R_{\rm B} = {\rm ld}(M) · f_{\rm A}$.
- Verwendet man bei der Decodierung $(v_{\rm C} ⇒ v_{\rm Q})$ die gleiche Zuordnung wie bei der Codierung $(q_{\rm Q} ⇒ q_{\rm C})$, so gilt (falls es zu keinen Übertragungsfehlern kommt): $v_{\rm Q}(ν · T_{\rm A}) = q_{\rm Q}(ν · T_{\rm A})$.
- Eine Alternative zum Dualcode ist der Graycode, bei dem sich benachbarte Binärwerte nur in einem Bit unterscheiden. Für $N = 3$:
- $\mu = 0$: LLL, $\mu = 1$: LLH, $\mu = 2$: LHH, $\mu = 3$: LHL, $\mu = 4$: HHL, $\mu = 5$: HHH, $\mu =6$: HLH, $\mu = 7$: HLL.
Signal–zu–Rausch–Leistungsverhältnis
Das digitale Pulscodemodulation (PCM) wird nun den analogen Modulationsverfahren (AM, FM) hinsichtlich des erreichbaren Sinken–SNR $ρ_v = P_q/P_ε$ bei AWGN–Rauschen vergleichend gegenüber gestellt. Wie in vorherigen Kapiteln, zum Beispiel bezeichnet $ξ = {α_{\rm K} }^2 · P_{\rm S}/(N_0 · B_{\rm NF})$ die Leistungskenngröße. Diese fasst verschiedene Einflüsse zusammen:
- den Kanaldämpfungsfaktor $α_{\rm K}$ (quadratisch),
- die Sendeleistung $P_{\rm S}$,
- die AWGN–Rauschleistungsdichte $N_0$ sowie
- die Signalbandbreite $B_{\rm NF}$; bei einer harmonischen Schwingung: Frequenz $f_{\rm N}$ statt $B_{\rm NF}$.
Die beiden Vergleichskurven für Amplitudenmodulation (AM) und für Frequenzmodulation (FM) lassen sich wie folgt beschreiben:
- Zweiseitenband–AM ohne Träger: $ρ_v = ξ \ ⇒ \ 10 · \lg ρ_v = 10 · \lg \ ξ$,
- FM mit $η = 3$: $ρ_υ = 3/2 \cdot η^2 · ξ = 13.5 · ξ \ ⇒ \ 10 · \lg \ ρ_v = 10 · \lg \ ξ + 11.3 \ \rm dB$.
Die Kurve für das PCM 30/32–System ist wie folgt zu interpretieren:
- Ist die Leistungskenngröße $ξ$ hinreichend groß, so treten keine Übertragungsfehler auf und das Fehlersignal $ε(t) = υ(t) \ - \ q(t)$ ist allein auf die Quantisierung zurückzuführen $(P_ε = P_{\rm Q})$.
- Mit der Quantisierungsstufenzahl $M = 2^N$ gilt dann näherungsweise:
- $$\rho_{v} = \frac{P_q}{P_\varepsilon}= M^2 = 2^{2N} \hspace{0.3cm}\Rightarrow \hspace{0.3cm} 10 \cdot {\rm lg}\hspace{0.1cm}\rho_{v}=20 \cdot {\rm lg}\hspace{0.1cm}M = N \cdot 6.02\,{\rm dB} \hspace{0.3cm} \Rightarrow \hspace{0.3cm} N = 8, \hspace{0.05cm} M =256:\hspace{0.2cm}10 \cdot {\rm lg}\hspace{0.1cm}\rho_{v}=48.16\,{\rm dB}\hspace{0.05cm}.$$
- Anzumerken ist, dass die angegebene Gleichung nur für ein sägezahnförmiges Quellensignal exakt gültig ist. Bei cosinusförmigem Quellensignal ist die Abweichung jedoch nicht sehr groß.
- Mit kleiner werdendem $ξ$ (kleinere Sendeleistung oder größere Rauschleistungsdichte) nehmen die Übertragungsfehler zu. Damit wird $P_ε > P_{\rm Q}$ und der Sinken–Störabstand wird kleiner.
- Die PCM (mit $M = 256$) ist den Analogverfahren (AM und FM) nur im unteren und mittleren $ξ$–Bereich überlegen. Spielen aber Übertragungsfehler keine Rolle mehr, so ist durch ein größeres $ξ$ keine Verbesserung mehr zu erzielen (horizontaler, gelb hinterlegter Kurvenabschnitt).
- Eine Verbesserung bringt dann nur eine Erhöhung von $N$ (Bitanzahl pro Abtastwert), also die Erhöhung von $M = 2^N$ (Quantisierungsstufenzahl). Beispielsweise erreicht man bei einer Compact Disc (CD) mit dem Parameter $N = 16$ ⇒ $M = 65536$ den Wert $10 · \lg \ ρ_v = 96.32 \ \rm dB$.
$\text{Beispiel 4:}$ Die folgende Grafik zeigt den begrenzenden Einfluss der Quantisierung:
- Weiß gepunktet eingezeichnet ist das Quellensignal $q(t)$ und grün gepunktet das Sinkensignal $v(t)$ nach einer PCM mit $N = 4$ ⇒ $M = 16$.
- Die Abtastzeitpunkte sind durch Kreuze markiert.
- Übertragungsfehler werden vorerst ausgeschlossen. Abtastung und Signalrekonstruktion seien bestmöglich an das Quellensignal angepasst.
Dieses Bild kann wie folgt interpretiert werden:
- Mit $N = 8$ ⇒ $M = 256$ ist das Sinkensignal $υ(t)$ vom Quellensignal $q(t)$ mit dem bloßen Auge nicht zu unterscheiden. Für beide gilt näherungsweise der weiß gepunktete Signalverlauf.
- Am Störabstand $10 · \lg \ ρ_v = 47.8 \ \rm dB$ erkennt man aber, dass das Quantisierungsrauschen (Leistung $P_\varepsilon$ des Fehlersignals) nur etwa um den Faktor $1.6 · 10^{–5}$ kleiner ist als die Leistung $P_q$ des Quellensignals. Dieses SNR wäre bei einem Sprach– oder Musiksignal schon deutlich hörbar.
- Obwohl das hier betrachtete Quellensignal weder sägezahnförmig noch cosinusförmig verläuft, sondern sich aus mehreren Frequenzanteilen zusammensetzt, weicht die angegebene Näherung $ρ_v ≈ M^2$ ⇒ $10 · \lg \ ρ_υ = 48.16 \ \rm dB$ nur unwesentlich vom tatsächlichen Wert ab.
- Dagegen erkennt man für $N = 4$ ⇒ $M = 16$ bereits im Bild Abweichungen zwischen dem Sinkensignal (grün markiert) und dem Quellensignal (weiße Markierung), was auch durch den sehr kleinen Störabstand $10 · \lg \ ρ_υ = 28.2 \ \rm dB$ quantitativ zum Ausdruck kommt.
Einfluss von Übertragungsfehlern
Ausgehend vom gleichen Analogsignal $q(t)$ wie im letzten Abschnitt und einer linearen Quantisierung mit $N = 8$ Bit ⇒ $M = 256$ werden nun die Auswirkungen von Übertragungsfehlern anhand des jeweiligen Sinkensignals $v(t)$ verdeutlicht.
- Die weißen Punkte markieren das Quellensignal $q(t)$. Ohne Übertragungsfehler ist das Sinkensignal $v(t)$ bei Vernachlässigung der Quantisierung genau so groß.
- Nun wird jeweils genau ein Bit des 5. Abtastwertes $q(5 · T_{\rm A}) = -0.715$ verfälscht, wobei dieser Abtastwert mit LLHL LHLL codiert wurde.
- Dieser Grafik zugrunde liegt der Dualcode, das heißt, dass das unterste Quantisierungsintervall $(\mu = 0)$ mit LLLL LLLL und das oberste Intervall $(\mu = 255)$ mit HHHH HHHH dargestellt wird.
Die Tabelle zeigt die Ergebnisse dieser Untersuchung:
- Der angegebene Störabstand $10 · \lg \ ρ_v$ wurde aus dem dargestellten (sehr kurzen) Signalausschnitt der Dauer $10 · T_{\rm A}$ berechnet.
- Bei jeweils einem Fehler bei der Übertragung von $10 · 8 = 80$ Bit entspricht dies einer Bitfehlerrate von $1.25\%$.
Die in der Grafik und der Tabelle dargestellten Ergebnisse dieser Fehleranalyse können wie folgt zusammengefasst werden:
- Wird nur das letzte Bit des Binärwortes verfälscht (LSB: Least Significant Bit, LLHL LHLL ⇒ LLHL LHLH), so ist mit dem bloßen Auge kein Unterschied zur fehlerfreien Übertragung zu erkennen (weißer Kurvenzug). Trotzdem wird der Störabstand um $3.5 \ \rm dB$ vermindert.
- Ein Übertragungsfehler des viertletzten Bits (grüne Kurve, LLHLLHLL ⇒ LLHLHHLL) führt bereits zu einer deutlich erkennbaren Verfälschung um acht Quantisierungsintervalle. Das heißt: $υ(5T_{\rm A}) \ - \ q(5T_{\rm A}) = 8/256 · 2 = 0.0625$ und der Störabstand sinkt auf $10 · \lg \ ρ_υ = 28.2 \ \rm dB$.
- Die rote Kurve zeigt schließlich den Fall, dass das MSB (Most Significant Bit) verfälscht wird: LLHLLHLL ⇒ HLHLLHLL. Dies führt zur Verfälschung $υ(5T_{\rm A}) \ – \ q(5T_{\rm A}) = 1$ (was dem halben Aussteuerbereich entspricht). Der Störabstand beträgt nun nur mehr etwa $4 \ \rm dB$.
- Zu allen Abtastzeitpunkten mit Ausnahme von $5T_{\rm A}$ stimmt $v(t)$ bis auf den Quantisierungsfehler mit $q(t)$ exakt überein. Außerhalb der durch gelbe Kreuze markierten Zeitpunkte führt der einzige Fehler bei $5T_{\rm A}$ aber in einem ausgedehnten Bereich zu starken Abweichungen, was auf die Interpolation mit der si–förmigen Impulsantwort des Rekonstruktionstiefpasses $H(f)$ zurückzuführen ist.
Abschätzung der SNR-Degradation durch Übertragungsfehler
Nun soll versucht werden, die SNR–Kurve des PCM–Systems unter Berücksichtigung von Bitfehlern zumindest näherungsweise zu bestimmen. Wir gehen dabei vom folgenden Blockschaltbild aus und setzen weiter voraus:
- Jeder Abtastwert $q_{\rm A}(νT)$ wird mit $M$ Stufen quantisiert und mit $N = {\rm ld} (M)$ Binärzeichen (Bit) dargestellt. Im Beispiel gilt $M = 8$ ⇒ $N = 3$.
- Die Binärdarstellung von $q_{\rm Q}(νT)$ liefert die Amplitudenkoeffizienten $a_k (k = 1, \text{...} \hspace{0.08cm}, N),$ die durch Bitfehler in die Koeffizienten $b_k$ verfälscht werden können. Sowohl $a_k$ als auch $b_k$ sind jeweils $±1$.
- Ein Bitfehler $(b_k ≠ a_k)$ tritt mit der Wahrscheinlichkeit $p_{\rm B}$ auf. Jedes Bit wird gleichwahrscheinlich verfälscht und in jedem PCM–Wort ist maximal ein Fehler (nur eines der $N$ Bits kann falsch sein).
Aus dem in der Grafik unten angegebenen Diagramm ist für $N = 3$ und natürliche Binärcodierung (Dualcode) zu erkennen:
- Eine Verfälschung des Koeffizenten $a_1$ verändert den quantisierten Wert $q_{\rm Q}(νT)$ um $±A$.
- Eine Verfälschung des Koeffizenten $a_2$ verändert den quantisierten Wert $q_{\rm Q}(νT)$ um $±A/2.$
- Eine Verfälschung des Koeffizenten $a_3$ verändert den quantisierten Wert $q_{\rm Q}(νT)$ um $±A/4$.
Durch Verallgemeinerung erhält man für die Abweichung $ε_k = υ_{\rm Q}(νT) \ - \ q_{\rm Q}(νT)$ unter der Voraussetzung, dass der Amplitudenkoeffizient $a_k$ falsch übertragen wurde:
- $$\varepsilon_k = - a_k \cdot A \cdot 2^{-k +1} \hspace{0.05cm}.$$
Für die so genannte Fehlerrauschleistung erhält man nach Mittelung über alle Verfälschungswerte $ε_k$ (mit $1 ≤ k ≤ N)$ unter Berücksichtigung der Bitfehlerwahrscheinlichkeit $p_{\rm B}$:
- $$P_{\rm F}= {\rm E}[\varepsilon_k^2] = \sum\limits^{N}_{k = 1} p_{\rm B} \cdot \left ( - a_k \cdot A \cdot 2^{-k +1} \right )^2 =\ p_{\rm B} \cdot A^2 \cdot \sum\limits^{N-1}_{k = 0} 2^{-2k } = p_{\rm B} \cdot A^2 \cdot \frac{1- 2^{-2N }}{1- 2^{-2 }} \approx {4}/{3} \cdot p_{\rm B} \cdot A^2 \hspace{0.05cm}.$$
Hierbei ist die Summenformel der geometrischen Reihe sowie die Näherung $1 – 2^{–2N } ≈ 1$ verwendet. Für $N = 8$ ⇒ $M = 256$ beträgt der damit verbundene relative Fehler beispielsweise etwa $\rm 10^{–5}$.
Ohne Berücksichtigung von Übertragungsfehlern hat sich für das Signal–zu–Rausch–Leistungsverhältnis $ρ_v = P_{\rm S}/P_{\rm Q}$ ergeben, wobei bei einem gleichverteilten Quellensignal (zum Beispiel sägezahnförmig) die Signalleistung und die Quantisierungsrauschleistung wie folgt zu berechnen ist:
- $$P_{\rm S}={A^2}/{3}\hspace{0.05cm},\hspace{0.3cm}P_{\rm Q}= {A^2}/{3} \cdot 2^{-2N } \hspace{0.05cm}.$$
Unter Berücksichtigung der Übertragungsfehler erhält man mit obigem Ergebnis:
- $$\rho_{\upsilon}= \frac{P_{\rm S}}{P_{\rm Q}+P_{\rm F}} = \frac{A^2/3}{A^2/3 \cdot 2^{-2N } + A^2/3 \cdot 4 \cdot p_{\rm B}} = \frac{1}{ 2^{-2N } + 4 \cdot p_{\rm B}} \hspace{0.05cm}.$$
Die Grafik zeigt den Rauschabstand $10 · \lg ρ_v$ in Abhängigkeit der (logarithmierten) Leistungskenngröße $ξ = P_{\rm S}/(N_0 · B_{\rm NF})$, wobei $B_{\rm NF}$ die Signalbandbreite angibt. Der konstante Kanaldämpfungsfaktor sei idealerweise $α_{\rm K} = 1$.
Beim optimalen Binärsystem und AWGN–Rauschen gilt aber für die Leistungskenngröße auch $ξ = E_{\rm B}/N_0$ (Energie pro Bit bezogen auf die Rauschleistungsdichte), und die Bitfehlerwahrscheinlichkeit ist dann mit der Gaußschen Fehlerfunktion ${\rm Q}(x)$ wie folgt gegeben:
- $$p_{\rm B}= {\rm Q} \left ( \sqrt{{2E_{\rm B}}/{N_0} }\right ) \hspace{0.05cm}.$$
Für $N = 8$ ⇒ $ 2^{–2{\it N} } = 1.5 · 10^{–5}$ sowie $10 · \lg \ ξ = 6 \ \rm dB$ ⇒ $p_{\rm B} = 0.0024$ (rot markierter Punkt in der Grafik) ergibt sich:
- $$\rho_{\upsilon}= \frac{1}{ 1.5 \cdot 10^{-5} + 4 \cdot 0.0024} \approx 100 \hspace{0.3cm} \Rightarrow \hspace{0.3cm}10 \cdot {\rm lg} \hspace{0.15cm}\rho_{\upsilon}\approx 20\,{\rm dB} \hspace{0.05cm}.$$
Dieser kleine $ρ_v$–Wert geht auf den Term $4 · 0.0024$ (Einfluss des Übertragungsfehlers) zurück, während im horizontalen Kurvenzug für jedes $N$ (Bitanzahl pro Abtastwert) der Term $\rm 2^{–2{\it N} }$ – also das Quantisierungsrauschen – dominiert.
Nichtlineare Quantisierung
Häufig werden die Quantisierungsintervalle nicht gleich groß gewählt, sondern man verwendet für den inneren Amplitudenbereich eine feinere Quantisierung als für große Amplituden. Dafür gibt es mehrere Gründe:
- Bei Audiosignalen werden Verfälschungen der leisen Signalanteile (also Werte in der Nähe der Nulllinie) subjektiv als störender empfunden als eine Beeinträchtigung großer Amplitudenwerte.
- Eine solche ungleichmäßige Quantisierung führt bei einem solchen Musik– oder Sprachsignal auch zu einem größeren Sinkenstörabstand, da hier die Signalamplitude nicht gleichverteilt ist.
Die Grafik zeigt ein Sprachsignal $q(t)$ und dessen Amplitudenverteilung $f_q(q)$ ⇒ Wahrscheinlichkeitsdichtefunktion. Es handelt sich um die sogenannte Laplaceverteilung, die man durch
- eine kontinuierliche, zweiseitige Exponentialverteilung, und
- eine Diracfunktion $δ(q)$ zur Berücksichtigung der Sprachpausen (magentafarben)
annähern kann.
In der Grafik nur angedeutet ist die nichtlineare Quantisierung, zum Beispiel mittels der 13–Segment–Kennlinie, die in der Aufgabe 4.5 genauer beschrieben ist:
- Die Quantisierungsintervalle werden hierbei zu den Rändern hin abschnittsweise immer breiter.
- Die häufigeren kleinen Amplituden werden dagegen sehr fein quantisiert.
Kompression und Expandierung
Eine ungleichmäßige Quantisierung kann zum Beispiel dadurch realisiert werden, in dem
- die abgetasteten Werte $q_{\rm A}(ν · T_{\rm A})$ zunächst durch eine nichtlineare Kennlinie $q_{\rm K}(q_{\rm A})$ verformt und
- die entstehenden Ausgangswerte $q_{\rm K}(ν · T_{\rm A})$ gleichmäßig quantisiert werden.
Damit ergibt sich folgende Signalkette:
$\text{Resümee:}$ Eine solche ungleichmäßige Quantisierung bedeutet:
- Durch die nichtlineare Kennlinie $q_{\rm K}(q_{\rm A})$ werden kleine Signalwerte verstärkt und große Werte abgeschwächt ⇒ Kompression.
- Diese bewusste Signalverzerrung macht man beim Empfänger durch die Umkehrfunktion $v_{\rm E}(υ_{\rm Q})$ wieder rückgängig ⇒ Expandierung.
- Den Gesamtvorgang von sendeseitiger Kompression und empfängerseitiger Expansion nennt man auch Kompandierung.
Für das PCM–System 30/32 wurde von der Comité Consultatif International des Télégraphique et Téléphonique (CCITT) die sog. A–Kennlinie empfohlen:
- $$y(x) = \left\{ \begin{array}{l} \frac{1 + {\rm ln}(A \cdot x)}{1 + {\rm ln}(A)} \\ \frac{A \cdot x}{1 + {\rm ln}(A)} \\ -\frac{1 + {\rm ln}(-A \cdot x)}{1 + {\rm ln}(A)} \\ \end{array} \right.\quad\begin{array}{*{5}c}{\rm{f\ddot{u}r}}\\{\rm{f\ddot{u}r}}\\{\rm{f\ddot{u}r}} \\ \end{array}\begin{array}{*{10}c}1/A \le x \le 1\hspace{0.05cm}, \\-1/A \le x \le 1/A\hspace{0.05cm}, \\-1 \le x \le -1/A\hspace{0.05cm}. \\ \end{array}$$
Hierbei ist zur Abkürzung $x = q_{\rm A}(ν · T_{\rm A})$ und $y = q_{\rm K}(ν · T_{\rm A})$ verwendet. Diese Kennlinie mit dem in der Praxis eingeführten Wert A = 87.56 hat eine sich ständig ändernde Steigung. Nähere Angaben zu dieser Art der ungleichmäßigen Quantisierung finden Sie in der Aufgabe 4.5.
Hinweis: Im dritten Teil des Lernvideos Pulscodemodulation werden behandelt:
- die Definition des Signal–zu–Rausch–Leistungsverhältnisses (SNR),
- der Einfluss von Quantisierungsrauschen und Übertragungsfehlern,
- die Unterschiede zwischen linearer und nichtlinearer Quantisierung.
Weitere Informationen zum Thema sowie Aufgaben, Simulationen und Programmierübungen finden Sie im
- Kapitel 12: Pulscodemodulation, Programm pcm
des Praktikums „Simulationsmethoden in der Nachrichtentechnik”. Diese (ehemalige) LNT-Lehrveranstaltung an der TU München basiert auf
- dem Lehrsoftwarepaket LNTsim ⇒ Link verweist auf die ZIP-Version des Programms und
- dieser Praktikumsanleitung ⇒ Link verweist auf die PDF-Version; Kapitel 12: Seite 271-294.
Aufgaben zum Kapitel
Aufgabe 4.2: Tiefpass zur Signalrekonstruktion
Zusatzaufgabe 4.2Z: Zum Abtasttheorem
Aufgabe 4.3: Natürliche und diskrete Abtastung
Aufgabe 4.4: Zum Quantisierungsrauschen
Zusatzaufgabe 4.4Z: Störabstand bei PCM
Aufgabe 4.5: Nichtlineare Quantisierung
Aufgabe 4.6: Quantisierungskennlinien