Informationstheorie/AWGN–Kanalkapazität bei wertdiskretem Eingang: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
 
(42 dazwischenliegende Versionen von 4 Benutzern werden nicht angezeigt)
Zeile 7: Zeile 7:
  
 
==AWGN–Modell für zeitdiskrete bandbegrenzte Signale==   
 
==AWGN–Modell für zeitdiskrete bandbegrenzte Signale==   
 +
<br>
 +
Am Ende des&nbsp; [[Informationstheorie/AWGN–Kanalkapazität_bei_wertkontinuierlichem_Eingang#Kanalkapazit.C3.A4t_des_AWGN.E2.80.93Kanals|letzten  Kapitels]]&nbsp; wurde das AWGN–Modell entsprechend der linken Grafik verwendet, gekennzeichnet durch die beiden Zufallsgrößen&nbsp; $X$&nbsp; und&nbsp; $Y$&nbsp; am Eingang und Ausgang sowie die stochastische Störung&nbsp; $N$&nbsp; als das Ergebnis eines mittelwertfreien Gaußschen Zufallsprozesses  &nbsp; ⇒  &nbsp; „Weißes Rauschen” mit der Varianz&nbsp; $σ_N^2$.&nbsp; Die Störleistung&nbsp; $P_N$&nbsp; ist ebenfalls gleich&nbsp; $σ_N^2$.
  
Am Ende von Kapitel 4.2 wurde das AWGN–Modell entsprechend der linken Grafik verwendet, gekennzeichnet durch die beiden Zufallsgrößen $X$ und $Y$ am Eingang und Ausgang sowie die stochastische Störung $N$ als das Ergebnis eines mittelwertfreien Gaußschen Zufallsprozesses ⇒  „Weißes Rauschen” mit der Varianz $σ_N^2$. Die Störleistung $P_N$ ist ebenfalls gleich $σ_N^2$.
+
[[Datei:P_ID2931__Inf_T_4_3_S1a.png|center|frame|Zwei weitgehend äquivalente Modelle für den AWGN–Kanal]]
  
[[Datei:P_ID2931__Inf_T_4_3_S1a.png|Zwei weitgehend äquivalente Modelle für den  AWGN–Kanal]]
+
Die maximale Transinformation &nbsp;$I(X; Y)$&nbsp; zwischen Eingang und Ausgang &nbsp; &nbsp; '''Kanalkapazität''' &nbsp;$C$&nbsp; ergibt sich dann, wenn eine Gaußsche Eingangs–WDF&nbsp;$f_X(x)$&nbsp; vorliegt.&nbsp; Mit der Sendeleistung&nbsp; $P_X = σ_X^2$ &nbsp; ⇒  &nbsp; Varianz der Zufallsgröße&nbsp; $X$&nbsp; lautet die Kanalkapazitätsgleichung:
 
 
Die maximale Transinformation $I(X; Y)$ zwischen Eingang und Ausgang Kanalkapazität $C$ ergibt sich dann, wenn eine Gaußsche Eingangs–WDF $f_X(x)$ vorliegt. Mit der Sendeleistung $P_X = σ_X^2$ (Varianz der Zufallsgröße $X$) lautet die Kanalkapazitätsgleichung:
 
 
   
 
   
$$C = 1/2 \cdot  {\rm log}_2 \hspace{0.1cm} ( 1 + {P_X}/{P_N})  
+
:$$C = 1/2 \cdot  {\rm log}_2 \hspace{0.1cm} ( 1 + {P_X}/{P_N})  
 
\hspace{0.05cm}.$$
 
\hspace{0.05cm}.$$
  
Nun beschreiben wir das AWGN–Kanalmodell gemäß dem rechts skizzierten Fall, dass am Kanaleingang die Folge $〈X_ν〉$ anliegt, wobei der Abstand zwischen aufeinander folgenden Werten $T_A$ beträgt. Diese Folge ist das zeitdiskrete Äquivalent des zeitkontinuierlichen Signals X(t) nach Bandbegrenzung und Abtastung.
+
Nun beschreiben wir das AWGN–Kanalmodell gemäß dem rechts skizzierten Fall, dass am Kanaleingang die Folge&nbsp; $〈X_ν〉$&nbsp; anliegt, wobei der Abstand zwischen aufeinander folgenden Werten&nbsp; $T_{\rm A}$&nbsp; beträgt.&nbsp; Diese Folge ist das zeitdiskrete Äquivalent des zeitkontinuierlichen Signals&nbsp; $X(t)$&nbsp; nach Bandbegrenzung und Abtastung.
Der Zusammenhang zwischen beiden Modellen kann anhand der folgenden Grafik hergestellt werden, die auf der nächsten Seite noch genauer beschrieben wird.
+
 
 +
Der Zusammenhang zwischen beiden Modellen kann anhand einer Grafik hergestellt werden, die anschließend genauer beschrieben wird.
 +
 
 +
{{BlaueBox|TEXT=&nbsp; Die&nbsp; $\text{wesentlichen Erkenntnisse}$&nbsp; vorneweg:
 +
*Beim rechten Modell gilt zu den Abtastzeitpunkten&nbsp; $ν·T_{\rm A}$&nbsp; der gleiche Zusammenhang&nbsp; $Y_ν = X_ν + N_ν$&nbsp; wie beim linken Modell.
 +
*Die Störkomponente&nbsp; $N_ν$&nbsp; ist nun durch&nbsp; $($auf&nbsp; $±B)$&nbsp; bandbegrenztes Weißes Rauschen mit der zweiseitigen Leistungsdichte &nbsp;${\it Φ}_N(f) = N_0/2$&nbsp; zu modellieren, <br>wobei &nbsp;$B = 1/(2T_{\rm A})$&nbsp; gelten muss &nbsp; ⇒  &nbsp;siehe&nbsp; [[Signaldarstellung/Zeitdiskrete_Signaldarstellung#Das_Abtasttheorem|Abtasttheorem]].}}
  
[[Datei: P_ID2932__Inf_T_4_3_S1b.png| AWGN–Modell unter Berücksichtigung von Zeitdiskretisierung und Bandbegrenzung]]
 
  
Die wesentlichen Erkenntnisse vorneweg:
+
$\text{ Interpretation:}$
*Beim rechten Modell gilt zu den Abtastzeitpunkten $ν·T_A$ genau der gleiche Zusammenhang $Y_ν = X_ν + N_ν$ wie beim bisherigen (linken) Modell.
 
*Die Störkomponente $N_ν$ ist nun durch (auf $±B$) bandbegrenztes Weißes Rauschen mit zweiseitiger Leistungsdichte $Φ_N(f) = N_0/2$ zu modellieren, wobei $B = 1/(2T_A)$ gelten muss  ⇒  „Abtasttheorem”.
 
  
 +
Beim modifizierten Modell gehen wir von einer unendlichen Folge&nbsp; $〈X_ν〉$&nbsp; von Gaußschen Zufallsgrößen aus, die einem&nbsp; [[Signaldarstellung/Zeitdiskrete_Signaldarstellung#Zeitbereichsdarstellung|Diracpuls]]&nbsp; $p_δ(t)$&nbsp; eingeprägt werden.&nbsp; Das resultierende zeitdiskrete Signal lautet somit:
  
Beim Modell gemäß der oberen Grafik auf der letzten Seite gehen wir von einer unendlichen Folge $〈X_ν〉$ von Gaußschen Zufallsgrößen aus, die einem [[Signaldarstellung/Zeitdiskrete_Signaldarstellung#Zeitbereichsdarstellung|Diracpuls]] $p_δ(t)$ eingeprägt werden. Das resultierende zeitdiskrete Signal lautet somit:
+
[[Datei:P_ID2932__Inf_T_4_3_S1b.png|right|frame| AWGN–Modell unter Berücksichtigung von Zeitdiskretisierung und Bandbegrenzung]]  
 
   
 
   
$$X_{\delta}(t) = T_{\rm A} \cdot \hspace{-0.1cm} \sum_{\nu = - \infty }^{+\infty} X_{\nu} \cdot
+
:$$X_{\delta}(t) = T_{\rm A} \cdot \hspace{-0.1cm} \sum_{\nu = - \infty }^{+\infty} X_{\nu} \cdot
 
  \delta(t- \nu \cdot T_{\rm A}
 
  \delta(t- \nu \cdot T_{\rm A}
 
  )\hspace{0.05cm}.$$
 
  )\hspace{0.05cm}.$$
  
Der Abstand aller (gewichteten) Diracfunktionen ist einheitlich $T_A$.
+
Der Abstand aller (gewichteten) Diracfunktionen ist einheitlich&nbsp; $T_{\rm A}$.&nbsp; Durch das Interpolationsfilter mit Impulsantwort&nbsp; $h(t)$&nbsp; sowie Frequenzgang&nbsp; $H(f)$,  
Durch das Interpolationsfilter mit der Impulsantwort $h(t)$ sowie dem Frequenzgang $H(f)$, wobei
 
 
   
 
   
$$h(t) = 1/T_{\rm A} \cdot {\rm si}(\pi \cdot t/T_{\rm A}) \quad \circ\!\!\!-\!\!\!-\!\!\!-\!\!\bullet \quad H(f) =
+
:$$h(t) = 1/T_{\rm A} \cdot {\rm sinc}(t/T_{\rm A}) \quad \circ\!\!\!-\!\!\!-\!\!\!-\!\!\bullet \quad H(f) =
\left\{ \begin{array}{c} 1 \\  0 \\  \end{array} \right. \begin{array}{*{20}c}  {\rm{f\ddot{u}r}} \hspace{0.3cm} |f| \le B, \\    {\rm{f\ddot{u}r}} \hspace{0.3cm} |f| > B, \\ \end{array}
+
\left\{ \begin{array}{c} 1 \\  0 \\  \end{array} \right. \begin{array}{*{20}c}  {\rm{f\ddot{u}r}} \hspace{0.3cm} |f| \le B, \\    {\rm{f\ddot{u}r}} \hspace{0.3cm} |f| > B, \\ \end{array},$$
\hspace{0.5cm} B = \frac{1}{T_{\rm A}}$$
 
  
gelten muss, entsteht das zeitkontinuierliche Signal $X(t)$ mit folgenden Eigenschaften:
+
wobei die&nbsp; (einseitige)&nbsp; Bandbreite&nbsp; $B = 1/(2T_{\rm A})$&nbsp; ist,&nbsp; entsteht das zeitkontinuierliche Signal&nbsp; $X(t)$&nbsp; mit folgenden Eigenschaften:
*Die Abtastwerte $X(ν·T_A)$ sind für alle ganzzahligen $ν$ identisch mit den Eingangswerten $X_ν$, was mit den äquidistanten Nullstellen der [[Signaldarstellung/Einige_Sonderfälle_impulsartiger_Signale#Rechteckimpuls|Spaltfunktion]]  ⇒  $\text{si}(x) = \sin(x)/x$ begründet werden kann.
+
*Die Abtastwerte&nbsp; $X(ν·T_{\rm A})$&nbsp; sind für alle ganzzahligen &nbsp;$ν$&nbsp; identisch mit den Eingangswerten&nbsp; $X_ν$, was mit den äquidistanten Nullstellen der Funktion&nbsp; $\text{sinc}(x) = \sin(\pi x)/(\pi x)$&nbsp; begründet werden kann.
*Gemäß dem Abtasttheorem ist $X(t)$ auf den Spektralbereich $±B$ ideal bandbegrenzt, wie die obige Rechnung gezeigt hat  ⇒  rechteckförmiger Frequenzgang $H(f)$ der einseitigen Bandbreite $B$.
+
*Gemäß dem Abtasttheorem ist&nbsp; $X(t)$&nbsp; auf den Spektralbereich&nbsp; $±B$&nbsp; ideal bandbegrenzt &nbsp; ⇒  &nbsp; wegen rechteckförmigem Frequenzgang&nbsp; $H(f)$.
  
Nach der Addition der Störung $N(t)$ mit der (zweiseitigen) Leistungsdichte $Φ_N(t) = N_0/2$ folgt das Matched–Filter mit si–förmiger Impulsantwort. Für die Störleistung am MF–Ausgang erhält man:
+
 
 +
{{BlaueBox|TEXT=
 +
$\text{Störleisungsbetrachtung:}$&nbsp; Nach der Addition der Störkomponente&nbsp; $N(t)$&nbsp; mit der (zweiseitigen) Leistungsdichte&nbsp; &nbsp;${\it Φ}_N(t) = N_0/2$&nbsp; folgt das Matched–Filter&nbsp; $\rm (MF)$&nbsp; mit&nbsp; $\rm sinc$–förmiger Impulsantwort.&nbsp; Für die&nbsp; '''Störleistung am MF–Ausgang'''&nbsp; gilt dann:
 
   
 
   
$$P_N = {\rm E}[N_\nu^2] = \frac{N_0}{2T_{\rm A}} = N_0 \cdot B\hspace{0.05cm}.$$
+
:$$P_N = {\rm E}\big[N_\nu^2 \big] = \frac{N_0}{2T_{\rm A} } = N_0 \cdot B\hspace{0.05cm}.$$}}
  
{{Box}}
+
 
'''Beweis''': Mit $B = 1/(2T_A)$ erhält man für die Impulsantwort $h_E(t)$ und die Spektralfunktion $H_E(f)$:
+
{{BlaueBox|TEXT=
 +
$\text{Beweis:}$&nbsp;
 +
Mit&nbsp; $B = 1/(2T_{\rm A} )$&nbsp; erhält man für die Impulsantwort&nbsp; $h_{\rm E}(t)$&nbsp; und die Spektralfunktion&nbsp; $H_{\rm E}(f)$:
 
   
 
   
$$h_{\rm E}(t) = 2B \cdot {\rm si}(2\pi \cdot B \cdot t) \quad \circ\!\!\!-\!\!\!-\!\!\!-\!\!\bullet \quad H_{\rm E}(f) =
+
:$$h_{\rm E}(t) = 2B \cdot {\rm sinc}(2 B \cdot t) \quad \circ\!\!\!-\!\!\!-\!\!\!-\!\!\bullet \quad H_{\rm E}(f) =
\left\{ \begin{array}{c} 1 \\  0 \\  \end{array} \right. \begin{array}{*{20}c}   {\rm{f\ddot{u}r}} \hspace{0.3cm} |f| \le B, \\    {\rm{f\ddot{u}r}} \hspace{0.3cm} |f| > B. \\ \end{array} $$
+
\left\{ \begin{array}{c} 1 \\  0 \\  \end{array} \right.  
 +
\begin{array}{*{20}c} \text{für} \hspace{0.3cm} \vert f \vert \le B, \\    \text{für} \hspace{0.3cm} \vert f \vert  > B. \\ \end{array}  
 +
$$
  
Daraus folgt entsprechend den Erkenntnissen der [[Stochastische_Signaltheorie/Stochastische_Systemtheorie#Problemstellung|Stochastischen Systemtheorie]]:
+
Daraus folgt entsprechend den Erkenntnissen der&nbsp; [[Stochastische_Signaltheorie/Stochastische_Systemtheorie#Problemstellung|Stochastischen Systemtheorie]]:
 
   
 
   
$$P_N =
+
:$$P_N =
 
  \int_{-\infty}^{+\infty}  
 
  \int_{-\infty}^{+\infty}  
  \hspace{-0.3cm} {\it \Phi}_N (f) \cdot |H_{\rm E}(f)|^2
+
  \hspace{-0.3cm} {\it \Phi}_N (f) \cdot \vert H_{\rm E}(f)\vert^2
 
  \hspace{0.15cm}{\rm d}f = \int_{-B}^{+B}  
 
  \hspace{0.15cm}{\rm d}f = \int_{-B}^{+B}  
 
  \hspace{-0.3cm} {\it \Phi}_N (f)  
 
  \hspace{-0.3cm} {\it \Phi}_N (f)  
 
  \hspace{0.15cm}{\rm d}f = \frac{N_0}{2} \cdot 2B = N_0 \cdot B
 
  \hspace{0.15cm}{\rm d}f = \frac{N_0}{2} \cdot 2B = N_0 \cdot B
\hspace{0.05cm}.$$
+
\hspace{0.05cm}.$$}}
 
 
{{end}}
 
 
 
*Tastet man das MF–Ausgangssignal in äquidistanten Abständen $T_A$ ab, so ergibt sich für die Zeitpunkte $ν·T_A$ die gleiche Konstellation wie bisher: $Y_ν = X_ν + N_ν$.
 
*Der Störanteil $N_ν$ im zeitdiskreten Ausgangssignal $Y_ν$ ist somit „bandbegrenzt” und „weiß”. Die Kanalkapazitätsgleichung muss somit nur geringfügig angepasst werden;
 
 
$$C = \frac{1}{2} \cdot  {\rm log}_2 \hspace{0.1cm} ( 1 + \frac {P_X}{N_0 \cdot B})
 
= \frac{1}{2} \cdot  {\rm log}_2 \hspace{0.1cm} ( 1 + \frac {2 \cdot P_X \cdot T_{\rm A}}{N_0})
 
= \frac{1}{2} \cdot  {\rm log}_2 \hspace{0.1cm} ( 1 + \frac {2 \cdot E_{\rm S}}{N_0})
 
\hspace{0.05cm}.$$
 
  
$E_S$ ist die Sende–Energie innerhalb einer Symboldauer $T_A$  ⇒  '''Energie pro Symbol'''.
 
  
 +
Weiter gilt:
 +
*Tastet man das Matched&ndash;Filter–Ausgangssignal in äquidistanten Abständen&nbsp; $T_{\rm A}$&nbsp; ab, so ergibt sich für die Zeitpunkte&nbsp; $ν ·T_{\rm A}$&nbsp; die gleiche Konstellation wie bisher, nämlich: &nbsp; $Y_ν = X_ν + N_ν$.
  
==Die Kanalkapazität $C$ als Funktion von $E_S/N_0$ == 
+
*Der Störanteil&nbsp; $N_ν$&nbsp; im zeitdiskreten Ausgangssignal&nbsp; &nbsp;$Y_ν$&nbsp; ist somit „bandbegrenzt” und „weiß” &nbsp; &rArr; &nbsp; Die Kanalkapazitätsgleichung muss nur geringfügig angepasst werden.
  
Die obere Grafik zeigt den Verlauf der AWGN–Kanalkapazität in Abhängigkeit des Quotienten $E_S/N_0$, wobei die linke Koordinatenachse und die roten Beschriftungen gültig sind:
+
*Mit &nbsp;$E_{\rm S} =  P_X \cdot T_{\rm A}$ &nbsp; ⇒ &nbsp; Sende–Energie innerhalb einer &bdquo;Symboldauer&rdquo; &nbsp;$T_{\rm A}$ &nbsp; ⇒ &nbsp; '''Exergie pro Symbol'''&nbsp; gilt dann:
 
   
 
   
$$C = \frac{1}{2} \cdot  {\rm log}_2 \hspace{0.1cm} ( 1 + \frac { 2 \cdot E_{\rm S}}{N_0})  
+
:$$C = {1}/{2} \cdot  {\rm log}_2 \hspace{0.1cm} ( 1 + \frac {P_X}{N_0 \cdot B})
\hspace{0.5cm}{\rm Einheit\hspace{-0.15cm}: \hspace{0.05cm}bit/Kanalzugriff\hspace{0.15cm} (englisch\hspace{-0.15cm}: \hspace{0.05cm}bit/channel\hspace{0.05cm}use)}
+
{1}/{2} \cdot  {\rm log}_2 \hspace{0.1cm} ( 1 + \frac {2 \cdot P_X \cdot T_{\rm A}}{N_0})  
 +
= {1}/{2} \cdot  {\rm log}_2 \hspace{0.1cm} ( 1 + \frac {2 \cdot E_{\rm S}}{N_0})  
 
\hspace{0.05cm}.$$
 
\hspace{0.05cm}.$$
  
Die Einheit wird manchmal auch mit „bit/Quellensymbol” oder kurz „bit/Symbol” bezeichnet.
 
  
[[Datei:P_ID2934__Inf_T_4_3_S2a.png| Kanalkapazitäten <i>C</i> und <i>C</i><sup>∗</sup>  über <i>E</i><sub>S</sub>/<i>N</i><sub>0</sub>]]
 
  
Die rechte (blaue) Achsenbeschriftung berücksichtigt die Beziehung $B = 1/(2T_A)$ und liefert somit eine obere Schranke für die Bitrate eines Digitalsystems, die bei diesem AWGN–Kanal noch möglich ist.
+
==Die Kanalkapazität&nbsp; $C$&nbsp; als Funktion von&nbsp; $E_{\rm S}/N_0$ == 
 +
<br>
 +
[[Datei:P_ID2934__Inf_T_4_3_S2a.png|right|frame|Kanalkapazitäten&nbsp; $C$&nbsp; und&nbsp; $C^{\hspace{0.05cm}*}$&nbsp;  über&nbsp; $E_{\rm S}/N_0$]]
 +
{{GraueBox|TEXT=
 +
$\text{Beispiel 1:}$&nbsp; Die Grafik zeigt den Verlauf der AWGN–Kanalkapazität in Abhängigkeit des Quotienten &nbsp;$E_{\rm S}/N_0$, wobei die linke Koordinatenachse und die roten Beschriftungen gültig sind:
 
   
 
   
$$C^{\hspace{0.05cm}*} = \frac{C}{T_{\rm A}} = B \cdot  {\rm log}_2 \hspace{0.1cm} ( 1 + \frac { 2 \cdot E_{\rm S}}{N_0})  
+
:$$C = {1}/{2} \cdot  {\rm log}_2 \hspace{0.1cm} ( 1 + \frac { 2 \cdot E_{\rm S} }{N_0})  
\hspace{1.0cm}{\rm Einheit\hspace{-0.15cm}: \hspace{0.05cm}bit/Sekunde}
+
\hspace{0.5cm}{\rm Einheit\hspace{-0.15cm}: \hspace{0.05cm}bit/Kanalzugriff}
 
\hspace{0.05cm}.$$
 
\hspace{0.05cm}.$$
  
Meist gibt man den Quotienten aus Symbolenergie $(E_S)$ und AWGN–Rauschleistungsdichte $(N_0)$ in logarithmischer Form an. Die untere Grafik zeigt die Kanalkapazitäten $C$ bzw. $C*$ als Funktion von 10 · lg $(E_S/N_0)$ im Bereich von –20 dB bis +30 dB. Ab etwa 10 dB ergibt sich ein (nahezu) linearer Verlauf.
+
Die (Pseudo&ndash;)Einheit wird manchmal auch mit „bit/Quellensymbol” oder kurz „bit/Symbol” bezeichnet.
  
[[Datei:P_ID2935__Inf_T_4_3_S2b.png|AWGN–Kanalkapazität als Funktion von 10 · lg (<i>E</i><sub>S</sub>/<i>N</i><sub>0</sub>) ]]
+
Die rechte (blaue) Achsenbeschriftung berücksichtigt die Beziehung &nbsp;$B = 1/(2T_{\rm A})$&nbsp; und liefert somit eine obere Schranke für die Bitrate&nbsp; $R$&nbsp; eines Digitalsystems, die bei diesem AWGN–Kanal noch möglich ist.
+
==Systemmodell zur Interpretation der AWGN–Kanalkapazität== 
+
:$$C^{\hspace{0.05cm}*} = \frac{C}{T_{\rm A} }  = B \cdot  {\rm log}_2 \hspace{0.1cm} ( 1 + \frac {  2 \cdot E_{\rm S} }{N_0})
 +
\hspace{0.5cm}{\rm Einheit\hspace{-0.15cm}: \hspace{0.05cm}bit/Sekunde}
 +
\hspace{0.05cm}.$$}}
  
Um das [[Informationstheorie/Anwendung_auf_die_Digitalsignalübertragung#Definition_und_Bedeutung_der_Kanalkapazit.C3.A4t|Kanalcodierungstheorem]] im Zusammenhang mit dem AWGN–Kanal besprechen zu können, benötigen wir noch eine Codiervorrichtung, die informationstheoretisch vollständig durch die Coderate $R$ gekennzeichnet wird.
 
  
[[Datei:P_ID2937__Inf_T_4_3_S3_neu.png|Modell zur Interpretation der AWGN–Kanalkapazität]]
+
[[Datei:P_ID2935__Inf_T_4_3_S2b.png|right|frame|AWGN–Kanalkapazitäten&nbsp; $C$&nbsp; und&nbsp; $C^{\hspace{0.05cm}*}$&nbsp; als Funktion von&nbsp;  $10 \cdot \lg \ E_{\rm S}/N_0$]]
 
+
{{GraueBox|TEXT=
Die Grafik beschreibt das von Shannon betrachtete Nachrichtensystem mit den Blöcken Quelle, Coder, (AWGN–)Kanal, Decoder und Empfänger. Im Hintergrund erkennt man ein Originalbild aus einem Shannon–Aufsatz zu diesem Thema. Rot eingezeichnet sind einige Bezeichnungen und Erläuterungen für den folgenden Text:
+
$\text{Beispiel 2:}$&nbsp;
*Das Quellensymbol $U$ entstammt einem Alphabet mit $M_U = |U| = 2^k$ Symbolen und kann durch $k$ gleichwahrscheinliche statistisch unabhängige Binärsymbole repräsentiert werden.
+
Oft gibt man den Quotienten aus Symbolenergie&nbsp; $(E_{\rm S})$&nbsp; und AWGN–Rauschleistungsdichte&nbsp; $(N_0)$&nbsp; logarithmisch an.
*Das Alphabet des Codesymbols $X$ hat den Symbolumfang $M_X = |X| = 2^n$, wobei sich $n$ aus der Coderate $R = k/n$ ergibt. Für $R = 1$ gilt somit $n = k$.
 
*Der Fall $n > k$ führt zu einer Coderate $R < 1$ und aus $n < k$ folgt für die Coderate $R > 1$.
 
 
 
Das '''Kanalcodierungstheorem''' besagt, dass es (mindestens) einen Code der Rate $R$ gibt, der zur Symbolfehlerwahrscheinlichkeit $p_S = \text{Pr}(V ≠ U) = 0$ führt, falls folgende Bedingungen erfüllt sind:
 
*Die Coderate $R$ ist nicht größer als die Kanalkapazität $C$.
 
*Ein solcher geeigneter Code ist unendlich lang: $n → ∞$, das heißt, dass die Zufallsgröße $X$ am Kanaleingang wertkontinuierlich ist. Gleiches gilt für $U$ sowie für die Zufallsgrößen $Y$ und $V$ nach dem AWGN–Kanal.
 
*Wegen $n → ∞$ ist auch tatsächlich eine Gaußverteilung $f_X(x)$ am Kanaleingang möglich, die der bisherigen Berechnung der AWGN–Kanalkapazität stets zugrunde gelegt wurde:
 
 
   
 
   
$$C = \frac{1}{2} \cdot  {\rm log}_2 \hspace{0.1cm} ( 1 + \frac { 2 \cdot E_{\rm S}}{N_0})  
+
*Diese Grafik zeigt die Kanalkapazitäten&nbsp; $C$&nbsp; bzw.&nbsp; $C^{\hspace{0.05cm}*}$&nbsp; als Funktion von&nbsp; $10 · \lg (E_{\rm S}/N_0)$&nbsp; im Bereich von &nbsp;$-20 \ \rm dB$ &nbsp;bis&nbsp; $+30 \ \rm dB$.
\hspace{0.5cm}{\rm Einheit\hspace{-0.15cm}: \hspace{0.05cm}bit/Kanalzugriff\hspace{0.15cm} (englisch\hspace{-0.15cm}: \hspace{0.05cm}bit/channel \hspace{0.05cm}use)}
 
\hspace{0.05cm}.$$
 
  
*Für einen Systemvergleich ist die Energie pro Symbol $(E_S)$ ungeeignet. Ein Vergleich sollte vielmehr auf der Energie $E_B$ pro Informationsbit basieren. Mit $E_B = E_S/R$ gilt somit auch:
 
 
   
 
   
$$C = \frac{1}{2} \cdot  {\rm log}_2 \hspace{0.1cm} ( 1 + \frac { 2 \cdot R  \cdot E_{\rm B}}{N_0})  
+
*Oberhalb von&nbsp; $\approx 10 \ \rm dB$&nbsp; ergibt sich hier ein (nahezu) linearer Verlauf.
\hspace{0.2cm}{\rm Einheit\hspace{-0.15cm}: \hspace{0.05cm}bit/Kanalzugriff\hspace{0.1cm} (englisch\hspace{-0.15cm}: \hspace{0.05cm}bit/channel \hspace{0.05cm}use)}
 
\hspace{0.05cm}.$$
 
  
Diese beiden Gleichungen werden auf der nächsten Seite diskutiert.
+
}}
 +
 +
==Systemmodell zur Interpretation der AWGN–Kanalkapazität== 
 +
<br>
 +
Um das&nbsp; [[Informationstheorie/Anwendung_auf_die_Digitalsignalübertragung#Definition_und_Bedeutung_der_Kanalkapazit.C3.A4t|Kanalcodierungstheorem]]&nbsp; im Zusammenhang mit dem AWGN–Kanal besprechen zu können, benötigen wir noch eine &bdquo;Codiervorrichtung&rdquo;, die hier allerdings informationstheoretisch allein durch die Coderate&nbsp; $R$&nbsp;  gekennzeichnet wird.
  
 +
[[Datei:P_ID2937__Inf_T_4_3_S3_neu.png|right|frame|Modell zur Interpretation der AWGN–Kanalkapazität]]
  
==Die Kanalkapazität $C$ als Funktion von $E_B/N_0$==
+
Die Grafik beschreibt das von Shannon betrachtete Nachrichtensystem mit den Blöcken Quelle,&nbsp; Coder,&nbsp; (AWGN–)Kanal,&nbsp; Decoder&nbsp; und&nbsp; Empfänger. &nbsp; Im Hintergrund erkennt man ein Originalbild aus einem Aufsatz über die Shannon–Theorie.&nbsp; Rot eingezeichnet wurden von uns nur einige Bezeichnungen und Erläuterungen für den folgenden Text:
 +
*Das Quellensymbol&nbsp; $U$&nbsp; entstammt einem Alphabet mit&nbsp; $M_U = |U| = 2^k$&nbsp; Symbolen und kann durch&nbsp; $k$&nbsp; gleichwahrscheinliche statistisch unabhängige Binärsymbole repräsentiert werden.
 +
*Das Alphabet des Codesymbols&nbsp; $X$&nbsp; hat den Symbolumfang&nbsp; $M_X = |X| = 2^n$, wobei sich&nbsp; $n$&nbsp; aus der Coderate&nbsp; $R = k/n$&nbsp; ergibt.
 +
*Für die Coderate&nbsp; $R = 1$&nbsp; gilt somit&nbsp; $n = k$&nbsp; und der Fall&nbsp; $n > k$&nbsp; führt zu einer Coderate&nbsp; $R < 1$.
 +
<br clear=all>
 +
{{BlaueBox|TEXT= &nbsp; $\rm Kanalcodierungstheorem:$&nbsp;
  
Die folgende Grafik zeigt die AWGN–Kanalkapazität $C$ als Funktion von
+
Dieses besagt, dass es (mindestens) einen Code der Rate&nbsp; $R$&nbsp; gibt,&nbsp; der zur Symbolfehlerwahrscheinlichkeit&nbsp; $p_{\rm S} = \text{Pr}(V ≠ U) \equiv 0$&nbsp; führt,&nbsp; falls folgende Bedingungen erfüllt sind:
*10 · lg $(E_S/N_0)$ ⇒  roter Kurvenverlauf:
+
*Die Coderate&nbsp; $R$&nbsp; ist nicht größer als die Kanalkapazität&nbsp; $C$.
+
*Ein solcher geeigneter Code ist unendlich lang: &nbsp; $n → ∞$.&nbsp; Deshalb ist auch tatsächlich eine Gaußverteilung &nbsp;$f_X(x)$&nbsp; am Kanaleingang möglich, die der bisherigen Berechnung der AWGN–Kanalkapazität stets zugrunde gelegt wurde:
$$C = \frac{1}{2} \cdot  {\rm log}_2 \hspace{0.1cm} ( 1 + \frac { 2 \cdot E_{\rm S}}{N_0})  
+
:$$C = {1}/{2} \cdot  {\rm log}_2 \hspace{0.1cm} ( 1 + \frac { 2 \cdot E_{\rm S} }{N_0})  
\hspace{0.5cm}{\rm Einheit\hspace{-0.15cm}: \hspace{0.05cm}bit/Kanalzugriff\hspace{0.15cm} (oder\hspace{-0.15cm}: \hspace{0.05cm}bit/Symbol)}
+
\hspace{1.3cm}{\rm Einheit\hspace{-0.15cm}: \hspace{0.05cm}bit/Kanalzugriff\hspace{0.15cm} (englisch\hspace{-0.15cm}: \hspace{0.05cm}bit/channel \hspace{0.15cm}use)}
\hspace{0.05cm}.$$
+
\hspace{0.05cm}.$$  
 +
*Die Kanaleingangsgröße&nbsp; $X$&nbsp; ist also wertkontinuierlich.&nbsp; Gleiches gilt für&nbsp; $U$&nbsp; und für die Größen&nbsp; $Y$,&nbsp; $V$&nbsp; nach dem AWGN–Kanal.
  
Rote Zahlen: Kapazität $C$ in „bit/Symbol” für 10 · lg $(E_S/N_0)$ = –20 dB, –15 dB, ... , +30dB.
+
*Für einen Systemvergleich ist die&nbsp; "Energie pro Symbol"&nbsp; $(E_{\rm S} )$&nbsp; allerdings ungeeignet.&nbsp;
*10 · lg $(E_B/N_0)$  ⇒  grüner Kurvenverlauf:
+
*Ein Vergleich sollte vielmehr auf der&nbsp; "Energie pro Informationsbit" &nbsp; &rArr; &nbsp; kurz:&nbsp; "Energie pro Bit"&nbsp;$(E_{\rm B})$&nbsp; basieren.&nbsp; Mit &nbsp;$E_{\rm B} = E_{\rm S}/R$&nbsp; gilt somit auch:
 
   
 
   
$$C = \frac{1}{2} \cdot  {\rm log}_2 \hspace{0.1cm} ( 1 + \frac { 2 \cdot R  \cdot E_{\rm B}}{N_0})  
+
:$$C = {1}/{2} \cdot  {\rm log}_2 \hspace{0.1cm} ( 1 + \frac { 2 \cdot R  \cdot E_{\rm B} }{N_0})  
\hspace{0.2cm}{\rm Einheit\hspace{-0.15cm}: \hspace{0.05cm}bit/Kanalzugriff\hspace{0.1cm} (oder \hspace{-0.15cm}: \hspace{0.05cm}bit/Symbol)}
+
\hspace{0.7cm}{\rm Einheit\hspace{-0.15cm}: \hspace{0.05cm}bit/Kanalzugriff\hspace{0.1cm} (englisch\hspace{-0.15cm}: \hspace{0.05cm}bit/channel \hspace{0.15cm}use)}
 
\hspace{0.05cm}.$$
 
\hspace{0.05cm}.$$
  
Grüne Zahlen: Erforderliches 10 · lg $(E_B/N_0)$ in „dB” für $C$ = 0, 1, ... , 5 in „bit/Symbol”.
+
Diese beiden Gleichungen werden auf der nächsten Seite diskutiert.}}
  
[[Datei:P_ID2938__Inf_T_4_3_S4.png|Die AWGN–Kanalkapazität in zwei unterschiedlichen Darstellungen]]
 
  
Die $C(E_B/N_0)$–Berechnung finden Sie in der Aufgabe A4.8 und der zugehörigen Musterlösung. Im Folgenden interpretieren wir das Ergebnis im Vergleich zur [[Informationstheorie/AWGN–Kanalkapazität_bei_wertdiskretem_Eingang#Die_Kanalkapazit.C3.A4t_.7FUNIQ-MathJax74-QINU.7F_als_Funktion_von_.7FUNIQ-MathJax75-QINU.7F|C(E_S/N_0)–Kurve]]:
+
==Die Kanalkapazität&nbsp; $C$&nbsp; als Funktion von&nbsp; $E_{\rm B}/N_0$== 
*Wegen $E_S = R · E_B$ liegt der Schnittpunkt beider Kurven bei $C$ (= $R$) = 1 [bit/Symbol]. Erforderlich sind dazu 10 · lg $(E_S/N_0)$ = 1.76 dB bzw. 10 · lg $(E_B/N_0)$ = 1.76 dB.
+
<br>
*Im Bereich $C$ > 1 liegt die grüne Kurve stets über der roten. Beispielsweise ergibt sich für 10 · lg $(E_B/N_0)$ = 20 dB die Kanalkapazität $C$ ≈ 5, für 10 · lg $(E_S/N_0)$ = 20 dB nur $C$ = 3.83.
+
[[Datei:P_ID2938__Inf_T_4_3_S4.png|right|frame|Die AWGN–Kanalkapazität&nbsp; $C$&nbsp; in zwei unterschiedlichen Darstellungen.<br>&nbsp; &nbsp; &nbsp;Die Preudo&ndash;Einheit&nbsp; "bit/Symbol"&nbsp; ist identisch mit&nbsp; "bit/Kanalzugriff".]]
*Ein Vergleich in horizontaler Richtung zeigt, dass die Kanalkapazität $C$ = 3 bit/Symbol schon mit 10 · lg $(E_B/N_0)$ ≈ 10 dB erreichbar ist, man aber 10 · lg $(E_S/N_0)$ ≈ 15 dB benötigt.
+
{{GraueBox|TEXT=
*Im Bereich $C$ < 1 liegt die rote Kurve stets über der grünen. Für $E_S/N_0$ > 0 gilt auch $C$ > 0. Bei logarithmischer Abszisse reicht somit die rote Kurve bis ins „Minus–Unendliche”.
+
$\text{Beispiel 3:}$&nbsp; Die Grafik zu diesem Beispiel zeigt die AWGN–Kanalkapazität&nbsp; $C$&nbsp; 
*Dagegen endet die grüne Kurve bei $E_B/N_0$ = ln (2) = 0.693 ⇒ 10 · lg $(E_B/N_0)$ = –1.59 dB absolute Grenze für die (fehlerfreie) Übertragung über den AWGN–Kanal.
+
*als Funktion von&nbsp; $10 · \lg (E_{\rm S}/N_0)$  &nbsp; ⇒  &nbsp; <u>roter Kurvenverlauf</u>:
 +
::$$C = {1}/{2} \cdot  {\rm log}_2 \hspace{0.1cm} ( 1 + \frac { 2 \cdot E_{\rm S} }{N_0});
 +
\hspace{1.0cm}{\rm Einheit\hspace{-0.15cm}:  \hspace{0.05cm}bit/Symbol}
 +
\hspace{0.05cm}.$$
 +
:Rote Zahlenwerte:&nbsp; Kapazität&nbsp; $C$&nbsp; in&nbsp; „bit/Symbol”&nbsp; für Abszissen <br>&nbsp; &nbsp;  $10 · \lg (E_{\rm S}/N_0) = -20 \ \rm dB, -15 \ \rm dB$, ... , $+30\ \rm dB$;
 +
*als Funktion von&nbsp; $10 · \lg (E_{\rm B}/N_0)$  &nbsp; ⇒  &nbsp;  <u>grüner Kurvenverlauf</u>:
 +
::$$C = {1}/{2} \cdot  {\rm log}_2 \hspace{0.1cm} ( 1 + \frac { 2 \cdot R  \cdot E_{\rm B} }{N_0})
 +
; \hspace{0.8cm}{\rm Einheit\hspace{-0.15cm}:  \hspace{0.05cm}bit/Symbol}
 +
\hspace{0.05cm}; $$
 +
:Grüne Zahlenwerte:&nbsp; Erforderliches&nbsp; $10 · \lg (E_{\rm B}/N_0)$&nbsp; in&nbsp; „dB” für&nbsp; Ordinate&nbsp; $C = 0,\ 1$,&nbsp; ... ,&nbsp; $5$&nbsp; in „bit/Symbol”.
 +
:Die ausführliche&nbsp;  $C(E_{\rm B}/N_0)$–Berechnung finden Sie in der&nbsp; [[Aufgaben:4.8_Numerische_Auswertung_der_AWGN-Kanalkapazität|Aufgabe 4.8]]&nbsp; und der zugehörigen Musterlösung.  
 +
<br clear=all>
 +
Im Folgenden interpretieren wir das (grüne) &nbsp;$C(E_{\rm B}/N_0)$–Ergebnis im Vergleich zur (roten) &nbsp;$C(E_{\rm S}/N_0)$–Kurve:
 +
*Wegen &nbsp;$E_{\rm S} = R · E_{\rm B}$&nbsp; liegt der Schnittpunkt beider Kurven bei &nbsp;$C (= R) = 1$&nbsp; bit/Symbol.&nbsp; Erforderlich sind &nbsp;$10 · \lg (E_{\rm S}/N_0) = 1.76$&nbsp; dB &nbsp;bzw.&nbsp; $10 · \lg (E_{\rm B}/N_0) = 1.76$&nbsp; dB gleichermaßen.
 +
*Im Bereich &nbsp;$C > 1$&nbsp; liegt die grüne Kurve stets über der roten.&nbsp; Beispielsweise ergibt sich für &nbsp;$10 · \lg (E_{\rm B}/N_0) = 20$&nbsp; dB die Kanalkapazität &nbsp;$C ≈ 5$, für &nbsp;$10 · \lg (E_{\rm S}/N_0) = 20$&nbsp; dB &nbsp;nur&nbsp; $C = 3.83$.
 +
*Ein Vergleich in horizontaler Richtung zeigt, dass die Kanalkapazität &nbsp;$C = 3$&nbsp; bit/Symbol schon mit &nbsp;$10 · \lg (E_{\rm B}/N_0) \approx 10$&nbsp; dB erreichbar ist, man aber &nbsp;$10 · \lg (E_{\rm S}/N_0) \approx 15$&nbsp; dB benötigt.
 +
*Im Bereich &nbsp;$C < 1$&nbsp; liegt die rote Kurve stets über der grünen.&nbsp; Für jedes &nbsp;$E_{\rm S}/N_0 > 0$&nbsp; gilt &nbsp;$C > 0$.&nbsp; Bei logarithmischer Abszisse wie in der vorliegenden Darstellung reicht somit die rote Kurve bis ins „Minus–Unendliche”.
 +
*Dagegen endet die grüne Kurve bei &nbsp;$E_{\rm B}/N_0 = \ln (2) = 0.693$ &nbsp; &nbsp; $10 · \lg (E_{\rm B}/N_0)= -1.59$&nbsp;  dB   &nbsp; &nbsp;  absolute Grenze für die (fehlerfreie) Übertragung über den AWGN–Kanal.}}
  
  
 
==AWGN–Kanalkapazität für binäre Eingangssignale ==  
 
==AWGN–Kanalkapazität für binäre Eingangssignale ==  
 +
<br>
 +
[[Datei:P_ID2941__Inf_T_4_3_S5a_neu.png|right|frame|Zur Berechnung der AWGN–Kanalkapazität für BPSK]]
  
Auf den bisherigen Seiten des Kapitels 4.3 wurde stets entsprechend der Shannon–Theorie von einem gaußverteilten und damit wertkontinuierlichem AWGN–Eingang $X$ ausgegangen. Nun betrachten wir den binären Fall und werden somit der Überschrift „''AWGN–Kanalkapazität bei wertdiskretem Eingang''” dieses Kapitels gerecht.
+
Auf den bisherigen Seiten dieses Kapitels wurde stets gemäß der Shannon–Theorie von einem gaußverteilten, also wertkontinuierlichen AWGN–Eingang&nbsp; $X$&nbsp; ausgegangen.&nbsp;
  
[[Datei:P_ID2941__Inf_T_4_3_S5a_neu.png|Zur Berechnung der AWGN–Kanalkapazität für BPSK]]
+
Nun betrachten wir den binären Fall und werden somit erst jetzt der Kapitel&ndash;Überschrift „AWGN–Kanalkapazität bei wertdiskretem Eingang” gerecht.
  
Die Grafik zeigt das zugrundeliegende Blockschaltbild für [[Digitalsignalübertragung/Lineare_digitale_Modulation_–_Kohärente_Demodulation#Gemeinsames_Blockschaltbild_f.C3.BCr_ASK_und_BPSK|Binary Phase Shift Keying]] (BPSK) mit binärem Eingang $U$ und ebenfalls binärem Ausgang $V$. Durch eine bestmögliche Codierung soll erreicht werden, dass die Fehlerwahrscheinlichkeit $\text{Pr}(V ≠ U)$ verschwindend klein wird.
+
Die Grafik zeigt das zugrundeliegende Blockschaltbild für &nbsp;[[Digitalsignalübertragung/Lineare_digitale_Modulation_–_Kohärente_Demodulation#Gemeinsames_Blockschaltbild_f.C3.BCr_ASK_und_BPSK|Binary Phase Shift Keying]]&nbsp; $\rm (BPSK)$&nbsp; mit binärem Eingang&nbsp; $U$&nbsp; und binärem Ausgang&nbsp; $V$.&nbsp;  
*Der Coderausgang ist gekennzeichnet durch die binäre Zufallsgröße $X ' = \{0, 1\} ⇒ M_{X'} = 2$, während der Ausgang $Y$ des AWGN–Kanals weiterhin wertkontinuierlich ist: $M_Y → ∞$.
 
*Durch das Mapping $X = 1 – 2X '$ kommt man von der unipolaren Darstellung zu der für BPSK besser geeigneten bipolaren (antipodalen) Beschreibung: $X ' = 0 → X = +1; X ' = 1 → X = –1$.
 
  
[[Datei:P_ID2942__Inf_T_4_3_S5b_neu.png|Bedingte Wahrscheinlichkeitsdichtefunktionen]]
+
Durch die bestmögliche Codierung soll erreicht werden, dass die Bitfehlerwahrscheinlichkeit &nbsp;$\text{Pr}(V ≠ U)$&nbsp; verschwindend klein wird.
 +
<br clear=all>
 +
*Der Coderausgang ist gekennzeichnet durch die binäre Zufallsgröße&nbsp; $X \hspace{0.03cm}' = \{0, 1\}$ &nbsp; ⇒ &nbsp; $M_{X'} = 2$, während der Ausgang&nbsp; $Y$&nbsp; des AWGN–Kanals weiterhin wertkontinuierlich ist: &nbsp; $M_Y → ∞$.
 +
*Durch das Mapping&nbsp; $X = 1 - 2X\hspace{0.03cm} '$&nbsp; kommt man von der unipolaren Darstellung zu der für BPSK besser geeigneten bipolaren (antipodalen) Beschreibung: &nbsp; $X\hspace{0.03cm} ' = 0 → \ X = +1; \hspace{0.5cm} X\hspace{0.03cm} ' = 1 → X = -1$.
  
*Der AWGN–Kanal ist hier durch die beiden bedingten Wahrscheinlichkeitsdichtefunktionen charakterisiert:
+
[[Datei:P_ID2942__Inf_T_4_3_S5b_neu.png|right|frame|Bedingte WDF für &nbsp;$X=-1$&nbsp; (rot)&nbsp; und&nbsp; $X=+1$&nbsp; (blau) ]]
+
 
$$\begin{align*}f_{Y|\hspace{0.03cm}{X}}(y|\hspace{0.03cm}{X}=+1) \hspace{-0.15cm} & = \hspace{-0.15cm} \frac{1}{\sqrt{2\pi\sigma^2}} \cdot {\rm exp}\left [-\frac{(y -  1)^2}   { 2 \sigma^2})\right ] \hspace{0.05cm}\hspace{0.05cm},\\
+
*Der AWGN–Kanal wird durch zwei bedingte Wahrscheinlichkeitsdichtefunktionen charakterisiert:
f_{Y|\hspace{0.03cm}{X}}(y|\hspace{0.03cm}{X}=-1) \hspace{-0.15cm} & =  \hspace{-0.15cm} \frac{1}{\sqrt{2\pi\sigma^2}} \cdot {\rm exp}\left [-\frac{(y +  1)^2}   { 2 \sigma^2})\right ] \hspace{0.05cm}
+
:$$f_{Y\hspace{0.05cm}|\hspace{0.03cm}{X}}(y\hspace{0.05cm}|\hspace{0.03cm}{X}=+1) =\frac{1}{\sqrt{2\pi\sigma^2}} \cdot {\rm e}^{-{(y -  1)^2}/(2 \sigma^2)} \hspace{0.05cm}\hspace{0.05cm},\hspace{0.5cm}\text{Kurzform:} \ \ f_{Y\hspace{0.05cm}|\hspace{0.03cm}{X}}(y\hspace{0.05cm}|\hspace{0.03cm}+1)\hspace{0.05cm},$$
\hspace{0.05cm}. \end{align*}$$
+
:$$f_{Y\hspace{0.05cm}|\hspace{0.03cm}{X}}(y\hspace{0.05cm}|\hspace{0.03cm}{X}=-1) =\frac{1}{\sqrt{2\pi\sigma^2}} \cdot {\rm e}^{-{(y +  1)^2}/(2 \sigma^2)} \hspace{0.05cm}\hspace{0.05cm},\hspace{0.5cm}\text{Kurzform:} \ \ f_{Y\hspace{0.05cm}|\hspace{0.03cm}{X}}(y\hspace{0.05cm}|\hspace{0.03cm}-1)\hspace{0.05cm}.$$
 +
*Da hier das Nutzsignal &nbsp;$X$&nbsp; auf &nbsp;$±1$&nbsp; normiert ist &nbsp; ⇒ &nbsp; Leistung&nbsp; $1$&nbsp; anstelle von &nbsp;$P_X$,&nbsp; muss die Varianz des AWGN–Rauschens&nbsp; $N$&nbsp; in gleicher Weise normiert werden: &nbsp;  $σ^2 = P_N/P_X$.
 +
*Der Empfänger trifft aus der reellwertigen Zufallsgröße &nbsp;$Y$&nbsp; (am AWGN–Kanalausgang) eine&nbsp; [[Kanalcodierung/Klassifizierung_von_Signalen#ML.E2.80.93Entscheidung_beim_AWGN.E2.80.93Kanal|Maximum–Likelihood–Entscheidung]].&nbsp; Der Empfängerausgang &nbsp;$V$&nbsp; ist binär&nbsp; $(0$ &nbsp;oder&nbsp; $1)$.
  
In Kurzform: $f_{Y | X} (y | +1)$ bzw. $f_{Y | X} (y | –1)$.
 
*Da hier das Nutzsignal $X$ auf ±1 normiert ist  ⇒  Leistung 1 anstelle von $P_X$, muss die Varianz des AWGN–Rauschens $N$ in gleicher Weise normiert werden:  $σ^2 = P_N/P_X$.
 
*Der Empfänger trifft aus der reellwertigen Zufallsgröße $Y$ (am AWGN–Kanalausgang) eine [[Kanalcodierung/Klassifizierung_von_Signalen#ML.E2.80.93Entscheidung_beim_AWGN.E2.80.93Kanal|Maximum–Likelihood–Entscheidung]]. Der Empfängerausgang $V$ ist binär (0 oder 1).
 
  
Ausgehend von diesem Modell wird auf der nächsten Seite die Kanalkapazität berechnet.
+
Ausgehend von diesem Modell berechnen wir nun die Kanalkapazität des AWGN–Kanals.  
  
+
Diese lautet  bei einer binären Eingangsgröße&nbsp; $X$&nbsp; allgemein unter Berücksichtigung von &nbsp;$\text{Pr}(X = -1) = 1 - \text{Pr}(X = +1)$:
Die Kanalkapazität des AWGN–Kanals unter der Nebenbedingung einer binären Eingangsgröße $X$ lautet allgemein unter Berücksichtigung von $\text{Pr}(X = –1) = 1 \text{Pr}(X = +1)$:
 
 
   
 
   
$$C_{\rm BPSK} =  \max_{ {\rm Pr}({X} =+1)} \hspace{-0.15cm}  I(X;Y)  
+
:$$C_{\rm BPSK} =  \max_{ {\rm Pr}({X} =+1)} \hspace{-0.15cm}  I(X;Y)  
 
\hspace{0.05cm}.$$
 
\hspace{0.05cm}.$$
  
 
Aufgrund des symmetrischen Kanals ist offensichtlich, dass die Eingangswahrscheinlichkeiten
 
Aufgrund des symmetrischen Kanals ist offensichtlich, dass die Eingangswahrscheinlichkeiten
 
   
 
   
$${\rm Pr}({{X}} =+1) = {\rm Pr}({{X} =-1)} = 0.5 $$
+
:$${\rm Pr}(X =+1) = {\rm Pr}(X =-1) = 0.5 $$
  
zum Optimum führen werden. Gemäß [[Informationstheorie/AWGN–Kanalkapazität_bei_wertkontinuierlichem_Eingang#Transinformationsberechnung_bei_additiver_St.C3.B6rung|Kapitel 4.2]] gibt es mehrere Berechnungsmöglichkeiten:
+
zum Optimum führen werden.&nbsp; Gemäß der Seite&nbsp; [[Informationstheorie/AWGN–Kanalkapazität_bei_wertkontinuierlichem_Eingang#Transinformationsberechnung_bei_additiver_St.C3.B6rung|Transinformationsberechnung bei additiver Störung]]&nbsp; gibt es mehrere Berechnungsmöglichkeiten:
+
 
$$ \begin{align*}C_{\rm BPSK} \hspace{-0.15cm} & = \hspace{-0.15cm}  h(X) + h(Y) - h(XY)\hspace{0.05cm},\\
+
:$$ \begin{align*}C_{\rm BPSK} & =   h(X) + h(Y) - h(XY)\hspace{0.05cm},\\
C_{\rm BPSK} \hspace{-0.15cm} & = \hspace{-0.15cm}  h(Y) - h(Y|X)\hspace{0.05cm},\\
+
C_{\rm BPSK} & =   h(Y) - h(Y|X)\hspace{0.05cm},\\
C_{\rm BPSK} \hspace{-0.15cm} & = \hspace{-0.15cm}  h(X) - h(X|Y)\hspace{0.05cm}. \end{align*}$$
+
C_{\rm BPSK} & = h(X) - h(X|Y)\hspace{0.05cm}. \end{align*}$$
 +
 
 +
Alle Ergebnisse sind noch um die Pseudo–Einheit „bit/Kanalzugriff” zu ergänzen.&nbsp;
 +
[[Datei:P_ID2946__Inf_T_4_3_S5c_neu.png|right|frame|Die Kanalkapazitätsgrenzen&nbsp; $C_{\rm BPSK}$&nbsp;  und&nbsp; $C_{\rm Gauß}$&nbsp;  im Vergleich]]
 +
Wir wählen hier die mittlere Gleichung:
  
Alle Ergebnisse sind noch um die Pseudo–Einheit „bit” zu ergänzen. Wir wählen hier die mittlere Gleichung:
 
 
*Die hierfür benötigte bedingte differentielle Entropie ist gleich
 
*Die hierfür benötigte bedingte differentielle Entropie ist gleich
+
:$$h(Y\hspace{0.03cm}|\hspace{0.03cm}X) = h(N) = 1/2 \cdot {\rm log}_2 \hspace{0.1cm}(2\pi{\rm e}\cdot \sigma^2)
$$h(Y|X) = h(N) = 1/2 \cdot {\rm log}_2 \hspace{0.1cm}(2\pi{\rm e}\cdot \sigma^2)
 
 
\hspace{0.05cm}. $$
 
\hspace{0.05cm}. $$
  
*Die differentielle Entropie $h(Y)$ ist vollständig durch die WDF $f_Y(y)$ gegeben. Mit den vorne definierten und skizzierten bedingten Wahrscheinlichkeitsdichtefunktionen erhält man:
+
*Die differentielle Entropie &nbsp;$h(Y)$&nbsp; ist vollständig durch die WDF &nbsp;$f_Y(y)$&nbsp; gegeben.&nbsp; Mit den vorne definierten und skizzierten bedingten Wahrscheinlichkeitsdichtefunktionen erhält man:
 
+
:$$f_Y(y) = {1}/{2} \cdot \big [ f_{Y\hspace{0.03cm}|\hspace{0.03cm}{X}}(y\hspace{0.05cm}|\hspace{0.05cm}{X}=-1) + f_{Y\hspace{0.03cm}|\hspace{0.03cm}{X}}(y\hspace{0.05cm}|\hspace{0.05cm}{X}=+1) \big ]$$
$$f_Y(y) = \frac{1}{2} \cdot \left [ f_{Y|{X}}(y\hspace{0.05cm}|{X}=-1) + f_{Y|{X}}(y\hspace{0.05cm}|{X}=+1) \right ]$$
+
:$$\Rightarrow \hspace{0.3cm}  h(Y) \hspace{-0.01cm}=\hspace{0.05cm}
 
 
$$\Rightarrow \hspace{0.3cm}  h(Y) \hspace{-0.01cm}=\hspace{0.05cm}
 
 
-\hspace{-0.7cm}  \int\limits_{y \hspace{0.05cm}\in \hspace{0.05cm}{\rm supp}(f_Y)} \hspace{-0.65cm}  f_Y(y) \cdot {\rm log}_2 \hspace{0.1cm} [f_Y(y)] \hspace{0.1cm}{\rm d}y
 
-\hspace{-0.7cm}  \int\limits_{y \hspace{0.05cm}\in \hspace{0.05cm}{\rm supp}(f_Y)} \hspace{-0.65cm}  f_Y(y) \cdot {\rm log}_2 \hspace{0.1cm} [f_Y(y)] \hspace{0.1cm}{\rm d}y
 
\hspace{0.05cm}.$$
 
\hspace{0.05cm}.$$
  
Es ist offensichtlich, dass $h(Y)$ nur durch numerische Integration ermittelt werden kann, insbesondere, wenn man berücksichtigt, dass sich im Überlappungsbereich $f_Y(y)$ aus der Summe der beiden bedingten Gauß–Funktionen ergibt.
+
Es ist offensichtlich, dass &nbsp;$h(Y)$&nbsp; nur durch numerische Integration ermittelt werden kann, insbesondere, wenn man berücksichtigt, dass sich &nbsp;$f_Y(y)$&nbsp; im Überlappungsbereich aus der Summe der beiden bedingten Gauß–Funktionen ergibt.
  
[[Datei:P_ID2944__Inf_T_4_3_S5d.png|<i>C</i><sub>BPSK</sub> und <i>C</i><sub>Gauß</sub>   im Vergleich]]
+
In der obigen Grafik sind über der Abszisse &nbsp;$10 · \lg (E_{\rm B}/N_0)$&nbsp; drei Kurven dargestellt:
 +
*die blau gezeichnete Kanalkapazität &nbsp;$C_{\rm Gauß}$, gültig für eine Gaußsche Eingangsgröße&nbsp; $X$ &nbsp; ⇒ &nbsp;   $M_X → ∞$,
 +
*die grün gezeichnete Kanalkapazität &nbsp;$C_{\rm BPSK}$&nbsp; für die Zufallsgröße&nbsp; $X = (+1, –1)$, sowie
 +
*die mit „BPSK ohne Codierung” bezeichnete rote Horizontale.
  
Das skizzierte Ergebnis wird auf der nächsten Seite diskutiert.
 
 
 
In der folgenden Grafik sind über der Abszisse 10 · lg $(E_B/N_0)$ drei Kurven dargestellt:
 
*die Kanalkapazität $C_{\rm Gauß}$, gültig für eine Gaußsche Eingangsgröße $X  ⇒  M_X → ∞$,
 
*die Kanalkapazität $C_{\rm BPSK}$ für die Zufallsgröße $X = (+1, –1)$, sowie
 
*die mit „BPSK ohne Codierung” bezeichnete Horizontale.
 
 
[[Datei:P_ID2946__Inf_T_4_3_S5c_neu.png|<i>C</i><sub>BPSK</sub>  und <i>C</i><sub>Gauß</sub>  im Vergleich]]
 
  
 
Diese Kurvenverläufe sind wie folgt zu interpretieren:
 
Diese Kurvenverläufe sind wie folgt zu interpretieren:
*Die grüne Kurve $C_{\rm BPSK}$ gibt die maximal zulässige Coderate $R$ einer BPSK an, bei der für das gegebene $E_B/N_0$ durch bestmögliche Codierung die Bitfehlerwahrscheinlichkeit $p_B$ = 0 möglich ist.
+
*Die grüne Kurve &nbsp;$C_{\rm BPSK}$&nbsp; gibt die maximal zulässige Coderate &nbsp;$R$&nbsp; von&nbsp; "Binary Phase Shift Keying"&nbsp; (BPSK) an, bei der für das gegebene &nbsp;$E_{\rm B}/N_0$&nbsp; durch bestmögliche Codierung die Bitfehlerwahrscheinlichkeit &nbsp;$p_{\rm B} \equiv 0$&nbsp; möglich ist.
*Für alle BPSK–Systeme mit den Koordinaten (10 · lg $E_B/N_0$, $R$) im „grünen Bereich” ist $p_B$ = 0 prinzipiell erreichbar. Aufgabe der Nachrichtentechniker ist es, hierfür geeignete Codes zu finden.
+
*Für alle BPSK–Systeme mit den Koordinaten &nbsp;$(10 · \lg \ E_{\rm B}/N_0, \ R)$&nbsp; im „grünen Bereich” ist &nbsp; $p_{\rm B} \equiv 0$ &nbsp; prinzipiell erreichbar.&nbsp; Aufgabe der Nachrichtentechniker ist es, hierfür geeignete Codes zu finden.
*Die BPSK–Kurve liegt stets unter der absoluten Shannon–Grenzkurve $C_{\rm Gauß}$ für $M_X → ∞$. Im unteren Bereich gilt $C_{\rm BPSK} ≈ C_{\rm Gauß}$. Zum Beispiel muss ein BPSK–System mit $R$ = 1/2 nur ein um 0.1 dB größeres $E_B/N_0$ bereitstellen, als es die (absolute) Kanalkapazität $C_{\rm Gauß}$ fordert.
+
*Die BPSK–Kurve liegt stets unter der absoluten Shannon–Grenzkurve &nbsp;$C_{\rm Gauß}$&nbsp; für &nbsp;$M_X → ∞$&nbsp;(blaue Kurve).&nbsp; Im unteren Bereich gilt &nbsp;$C_{\rm BPSK} ≈ C_{\rm Gauß}$.&nbsp; Zum Beispiel muss ein BPSK–System mit &nbsp;$R = 1/2$&nbsp; nur ein um&nbsp; $0.1\ \rm  dB$&nbsp; größeres &nbsp;$E_{\rm B}/N_0$&nbsp; bereitstellen, als es die (absolute) Kanalkapazität &nbsp;$C_{\rm Gauß}$&nbsp; fordert.
*Ist $E_B/N_0$ endlich, so gilt stets $C_{\rm BPSK}$ < 1 ⇒ siehe Aufgabe Z4.9. Eine BPSK mit $R$ = 1 (und somit ohne Codierung) wird stets eine Bitfehlerwahrscheinlichkeit $p_B$ > 0 zur Folge haben.
+
*Ist &nbsp;$E_{\rm B}/N_0$&nbsp; endlich, so gilt stets &nbsp;$C_{\rm BPSK} < 1$ &nbsp; &nbsp;  siehe&nbsp; [[Aufgaben:4.9Z_Ist_bei_BPSK_die_Kanalkapazität_C_≡_1_möglich%3F|Aufgabe 4.9Z]].&nbsp; Eine BPSK mit &nbsp;$R = 1$&nbsp; (und somit ohne Codierung) wird also stets eine Bitfehlerwahrscheinlichkeit &nbsp;$p_{\rm B} > 0$&nbsp; zur Folge haben.
*Die Fehlerwahrscheinlichkeiten eines solchen BPSK–Systems ohne Codierung ( $R$ = 1 ) sind auf der roten Horizontalen angegeben. Um $p_B ≤ 10^{–5}$ zu erreichen, benötigt man mindestens 10 · lg $(E_B/N_0)$ = 9.6 dB.
+
*Die Fehlerwahrscheinlichkeiten eines solchen BPSK–Systems ohne Codierung&nbsp; $($mit  &nbsp;$R = 1)$&nbsp; sind auf der roten Horizontalen angegeben.&nbsp; Um &nbsp;$p_{\rm B} ≤ 10^{–5}$&nbsp; zu erreichen, benötigt man demnach mindestens &nbsp;$10 · \lg (E_{\rm B}/N_0) = 9.6\ \rm  dB$.
 +
*Diese Wahrscheinlichkeiten ergeben sich gemäß dem  Kapitel&nbsp; [[Digitalsignalübertragung/Lineare_digitale_Modulation_–_Kohärente_Demodulation#Fehlerwahrscheinlichkeit_des_optimalen_BPSK.E2.80.93Systems|Fehlerwahrscheinlichkeit des optimalen BPSK-Systems]]&nbsp; im Buch &bdquo;Digitalsignalübertragung&rdquo; zu
  
Die Wahrscheinlichkeiten ergeben sich gemäß [[Digitalsignalübertragung/Lineare_digitale_Modulation_–_Kohärente_Demodulation#Fehlerwahrscheinlichkeit_des_optimalen_BPSK.E2.80.93Systems_.282.29|Kapitel 1.5]] im Buch [[Digitalsignalübertragung]] zu
+
:$$p_{\rm B} = {\rm Q} \left ( \sqrt{S \hspace{-0.06cm}N\hspace{-0.06cm}R}\right ) \hspace{0.45cm} {\rm mit } \hspace{0.45cm}  
 
 
$$p_{\rm B} = {\rm Q} \left ( \sqrt{S \hspace{-0.06cm}N\hspace{-0.06cm}R}\right ) \hspace{0.45cm} {\rm mit } \hspace{0.45cm}  
 
 
S\hspace{-0.06cm}N\hspace{-0.06cm}R = 2\cdot E_{\rm B}/{N_0}
 
S\hspace{-0.06cm}N\hspace{-0.06cm}R = 2\cdot E_{\rm B}/{N_0}
 
\hspace{0.05cm}. $$
 
\hspace{0.05cm}. $$
  
''Hinweis'': In obiger Grafik ist 10 · lg (SNR) als zweite, zusätzliche Abszissenachse eingezeichnet. Die Funktion Q(x) bezeichnet man als die komplementäre Gaußsche Fehlerfunktion.
+
<u>Hinweise</u>:  
 +
*In obiger Grafik ist als zweite, zusätzliche Abszissenachse&nbsp; $10 · \lg (SNR)$&nbsp; eingezeichnet.&nbsp; "SNR"&nbsp; steht hierbei für&nbsp; "Signal-to-Noise Ratio".
 +
*Die Funktion&nbsp; ${\rm Q}(x)$&nbsp; bezeichnet man als das&nbsp; [[Stochastische_Signaltheorie/Gaußverteilte_Zufallsgrößen#.C3.9Cberschreitungswahrscheinlichkeit|komplementäre Gaußsche Fehlerintegral]].
  
  
 
==Vergleich zwischen Theorie und Praxis==   
 
==Vergleich zwischen Theorie und Praxis==   
 +
<br>
 +
Anhand zweier Grafiken soll gezeigt werden, in wie weit sich etablierte Kanalcodes der BPSK–Kanalkapazität (grüne Kurve) annähern.&nbsp; Als Ordinate aufgetragen ist die Rate &nbsp;$R = k/n$&nbsp; dieser Codes bzw. die Kapazität &nbsp;$C$&nbsp; (wenn noch die Pseudo–Einheit „bit/Kanalzugriff” hinzugefügt wird).
  
Anhand zweier Grafiken soll gezeigt werden, in wie weit sich etablierte Kanalcodes der BPSK–Kanalkapazität (grüne Kurve) annähern. Als Ordinate aufgetragen ist die Rate $R = k/n$ dieser Codes bzw. die Kapazität $C$ (wenn noch die Pseudo–Einheit „bit/Kanalzugriff” hinzugefügt wird). Vorausgesetzt ist:
+
Vorausgesetzt ist:
*der AWGN–Kanal, gekennzeichnet durch 10 · lg $(E_B/N_0)$ in dB, und
+
*der AWGN–Kanal, gekennzeichnet durch &nbsp;$10 · \lg (E_{\rm B}/N_0)$ in dB, und
*für die durch Kreuze markierten realisierten Codes eine Bitfehlerrate (BER) von $10^{–5}$.
+
*für die durch Kreuze markierten realisierten Codes eine&nbsp; [[Digitalsignalübertragung/Fehlerwahrscheinlichkeit_bei_Basisbandübertragung#Definition_der_Bitfehlerquote|Bitfehlerrate]]&nbsp; $\rm (BER)$&nbsp; von&nbsp; $10^{–5}$.
  
Zu beachten ist, dass die Kanalkapazitätskurven stets für $n → ∞$ und BER = 0 gelten. Würde man diese strenge Forderung „feherfrei” auch an die betrachteten Kanalcodes endlicher Codelänge $n$ anlegen, so wäre hierfür stets 10 · $E_B/N_0 → ∞$ erforderlich. Dies ist aber ein eher akademisches Problem, das für die Praxis weniger Bedeutung hat. Für $\text{BER} = 10^{–10}$ ergäbe sich eine qualitativ ähnliche Grafik.
 
  
[[Datei:P_ID2949__Inf_T_4_3_S6a.png|Raten und erforderliches <i>E</i><sub>B</sub>/<i>N</i><sub>0</sub> verschiedener Kanalcodes]]
+
Zu beachten ist, dass die Kanalkapazitätskurven stets für &nbsp;$n → ∞$&nbsp; und &nbsp;$\rm BER \equiv 0$&nbsp; gelten.  
 +
*Würde man die strenge Forderung „fehlerfrei” auch an die Kanalcodes endlicher Codelänge &nbsp;$n$&nbsp; anlegen, so wäre hierfür stets &nbsp;$10 · \lg \ (E_{\rm B}/N_0) \to \infty$  erforderlich.
 +
*Dies ist aber ein eher akademisches Problem, also wenig praxisrelevant.&nbsp; Für &nbsp;$\text{BER} = 10^{–10}$&nbsp; ergäbe sich eine qualitativ ähnliche Grafik.
  
Es folgen einige Erläuterungen zu den Daten, die der Vorlesung <ref>Liva, G.: ''Channel Coding''. Vorlesungsmanuskript, Lehrstuhl für Nachrichtentechnik, TU München und DLR Oberpfaffenhofen, 2010.</ref> entnommen wurden. Die folgenden Links beziehen sich oft auf das Buch [[Kanalcodierung]].
 
*Die Punkte '''A''', '''B''' und '''C''' markieren [[Kanalcodierung/Beispiele_binärer_Blockcodes#Hamming.E2.80.93Codes_.281.29|Hamming–Codes]] der Raten $R$ = 4/7 ≈ 0.57, $R$ ≈ 0.73 bzw. $R$ ≈ 0.84. Für $\text{BER} = 10^{–5}$ benötigen diese sehr frühen Codes (aus dem Jahr 1950) alle 10 · lg $(E_B/N_0)$ > 8 dB.
 
*Die Markierung '''D''' kennzeichnet den binären [https://de.wikipedia.org/wiki/Golay-Code Golay–Code] mit der Rate 1/2 und der Punkt '''E''' einen [https://de.wikipedia.org/wiki/Reed-Muller-Code Reed–Muller–Code]. Dieser sehr niederratige Code kam bereits 1971 bei der Raumsonde Mariner 9 zum Einsatz.
 
*Die [[Kanalcodierung/Definition_und_Eigenschaften_von_Reed–Solomon–Codes#Konstruktion_von_Reed.E2.80.93Solomon.E2.80.93Codes_.281.29|Reed–Solomon–Codes]] (RS–Codes, ca. 1960) sind eine Klasse zyklischer Blockcodes. '''F''' markiert einen RS–Code der Rate 223/255 > 0.9 und einem erforderlichen $E_B/N_0$ < 6 dB.
 
*Die Punkte '''G''' und '''H''' bezeichnen zwei Faltungscodes (englisch: ''Convolutional Codes'', CC) mittlerer Rate. Der Code '''G''' wurde schon 1972 bei der Pioneer10–Mission eingesetzt.
 
*Die Kanalcodierung der Voyager–Mission Ende der 1970er Jahre ist mit '''I''' markiert. Es handelt sich um die Verkettung eines (2, 1, 7)–Faltungscodes mit einem RS–Code.
 
  
Anzumerken ist, dass bei den Faltungscodes der dritte Kennungsparameter eine andere Bedeutung hat als bei den Blockcodes. (2, 1, 32) weist beispielsweise auf das Memory $m$ = 32 hin.
+
{{GraueBox|TEXT=
Auf der nächsten Seite folgen noch die Kenndaten von Systemen mit iterativer Decodierung.
+
$\text{Beispiel 4:}$&nbsp;
 +
In der Grafik sind die Kenndaten von frühen Systemen mit Kanalcodierung und klassischer Decodierung angegeben.
 +
Es folgen einige Erläuterungen zu den Daten, die der Vorlesung&nbsp; [Liv10]<ref name = 'Liv10'>Liva, G.:&nbsp; Channel Coding.
 +
Vorlesungsmanuskript, Lehrstuhl für Nachrichtentechnik, TU München und DLR Oberpfaffenhofen, 2010.</ref>&nbsp; entnommen wurden.&nbsp; Die Links bei diesen Erläuterungen beziehen sich oft auf das&nbsp; $\rm LNTwww$&ndash;Buch [[Kanalcodierung]].
  
 +
[[Datei:P_ID2949__Inf_T_4_3_S6a.png|right|frame|Raten und erforderliches &nbsp;$E_{\rm B}/{N_0}$&nbsp; verschiedener Kanalcodes]]
  
Die frühen Kanalcodes der letzten Seite liegen noch relativ weit von der Kanalkapazitätskurve entfernt. Dies war wahrscheinlich auch ein Grund, warum dem Autor die auch große praktische Bedeutung der Informationstheorie verschlossen blieb, als er diese Anfang der 1970er Jahre im Studium kennenlernte.
+
*Die Punkte&nbsp; $\rm A$,&nbsp; $\rm B$&nbsp; und&nbsp; $\rm C$&nbsp; markieren&nbsp; [[Kanalcodierung/Beispiele_binärer_Blockcodes#Hamming.E2.80.93Codes|Hamming–Codes]]&nbsp; der Raten&nbsp; $R = 4/7 ≈ 0.57$,&nbsp; $R ≈ 0.73$&nbsp; bzw.&nbsp; $R ≈ 0.84$.&nbsp; Für $\text{BER} = 10^{–5}$&nbsp; benötigen diese sehr frühen Codes&nbsp; (aus dem Jahr 1950)&nbsp; alle&nbsp; $10 · \lg (E_{\rm B}/N_0) > 8\ \rm  dB$.
 +
*Die Markierung&nbsp; $\rm D$&nbsp; kennzeichnet den binären&nbsp; [https://de.wikipedia.org/wiki/Golay-Code Golay–Code]&nbsp; mit der Rate&nbsp; $R = 1/2$&nbsp; und der Punkt&nbsp; $\rm E$&nbsp; einen&nbsp; [https://de.wikipedia.org/wiki/Reed-Muller-Code Reed–Muller–Code].&nbsp; Dieser sehr niederratige Code kam bereits 1971 bei der&nbsp; [https://de.wikipedia.org/wiki/Mariner Raumsonde Mariner 9]&nbsp; zum Einsatz.
 +
*Die&nbsp; [[Kanalcodierung/Definition_und_Eigenschaften_von_Reed–Solomon–Codes#Konstruktion_von_Reed.E2.80.93Solomon.E2.80.93Codes_.281.29|Reed–Solomon–Codes]]&nbsp; (RS–Codes, ca. 1960)&nbsp; sind eine Klasse zyklischer Blockcodes.&nbsp; $\rm F$ markiert einen RS–Code der Rate&nbsp; $223/255 \approx 0.875$&nbsp; und einem erforderlichen&nbsp; $E_{\rm B}/N_0 < 6 \ \rm  dB$.
 +
*$\rm G$&nbsp; und&nbsp; $\rm H$&nbsp; bezeichnen zwei&nbsp; [[Kanalcodierung/Grundlagen_der_Faltungscodierung|Faltungscodes]] &nbsp;$($englisch:&nbsp; "Convolutional Codes",&nbsp; $\rm CC)$&nbsp; mittlerer Rate.&nbsp; Der Code&nbsp; $\rm G$&nbsp; wurde schon 1972 bei der&nbsp; [https://de.wikipedia.org/wiki/Pioneer_10 Pioneer 10–Mission]&nbsp; eingesetzt.
 +
*Die Kanalcodierung der&nbsp; [https://voyager.jpl.nasa.gov/mission/ Voyager–Mission]&nbsp; Ende der 1970er Jahre ist mit &nbsp;$\rm I$&nbsp; markiert. Es handelt sich um die&nbsp; [[Kanalcodierung/Soft–in_Soft–out_Decoder#Grundstruktur_von_verketteten_Codiersystemen|Verkettung]]&nbsp; eines&nbsp; $\text{(2, 1, 7)}$–Faltungscodes mit einem Reed–Solomon–Code.
  
  
Diese Sichtweise hat sich deutlich verändert, als in den 1990er Jahren sehr lange Kanalcodes zusammen mit iterativer Decodierung aufkamen. Die neuen Markierungspunkte liegen näher an der Kapazitätskurve.
+
Anzumerken ist, dass bei den Faltungscodes der dritte Kennungsparameter eine andere Bedeutung hat als bei den Blockcodes.&nbsp; So weist beispielsweise  die Kennung&nbsp; $\text{(2, 1, 32)}$&nbsp; auf das Memory&nbsp; $m = 32$&nbsp; hin.}}
  
[[Datei:P_ID2950__Inf_T_4_3_S6b.png|Raten und erforderliches <i>E</i><sub>B</sub>/<i>N</i><sub>0</sub>  für iterative Codierverfahren ]]
 
  
 +
[[Datei:P_ID2950__Inf_T_4_3_S6b.png|right|frame|Raten und erforderliches &nbsp;$E_{\rm B}/{N_0}$&nbsp;  für iterative Codierverfahren ]]
 +
{{GraueBox|TEXT=
 +
$\text{Beispiel 5:}$&nbsp;
 +
Die im&nbsp; $\text{Beispiel 4}$&nbsp; genannten frühen Kanalcodes liegen noch relativ weit von der Kanalkapazitätskurve entfernt.&nbsp;
 +
 +
Dies war wahrscheinlich auch ein Grund, warum dem Autor dieses Lerntutorials die auch große praktische Bedeutung der Informationstheorie verschlossen blieb, als er diese Anfang der 1970er Jahre im Studium kennengelernt hat.
 +
 +
Die Sichtweise hat sich deutlich verändert, als in den 1990er Jahren sehr lange Kanalcodes zusammen mit iterativer Decodierung aufkamen.&nbsp; Die neuen Markierungspunkte liegen deutlich näher an der Kapazitätsgrenzkurve.
 +
<br clear=all>
 
Hier noch einige Erläuterungen zu dieser Grafik:
 
Hier noch einige Erläuterungen zu dieser Grafik:
*Rote Kreuze markieren sog. [https://de.wikipedia.org/wiki/Turbo-Code Turbo–Codes] nach CCSDS (''Consultative Committee for Space Data Systems'') mit jeweils $k$ = 6920 Informationsbits und unterschiedlichen Codelängen $n = k/R$. Diese von [https://de.wikipedia.org/wiki/Claude_Berrou Claude Berrou] um 1990 erfundenen Codes können iterativ decodiert werden. Die (roten) Markierungen liegen jeweils weniger als 1 dB von der Shannon–Grenze entfernt.
+
*Rote Kreuze markieren die so genannten&nbsp; [https://de.wikipedia.org/wiki/Turbo-Code Turbo–Codes]&nbsp; nach&nbsp; $\rm CCSDS$&nbsp; ("Consultative Committee for Space Data Systems")&nbsp; mit jeweils&nbsp; $k = 6920$&nbsp; Informationsbit und unterschiedlichen Codelängen&nbsp; $n = k/R$.&nbsp; Diese von&nbsp; [https://de.wikipedia.org/wiki/Claude_Berrou Claude Berrou]&nbsp; um 1990 erfundenen Codes können iterativ decodiert werden.&nbsp; Die (roten) Markierungen liegen jeweils weniger als&nbsp; $1 \ \rm dB$&nbsp; von der Shannon–Grenze entfernt.
*Ähnlich verhalten sich die [https://en.wikipedia.org/wiki/Low-density_parity-check_code LDPC–Codes] (''Low Density Parity–check Codes'') mit konstanter Codelänge $n$ = 64800 ⇒ weiße Rechtecke). Sie werden seit 2006 bei DVB–S2 (''Digital Video Broadcast over Satellite'') eingesetzt und eignen sich aufgrund der spärlichen Einsen–Belegung der Prüfmatrix sehr gut für die iterative Decodierung mittels [https://en.wikipedia.org/wiki/Factor_graph Faktor–Graphen] und Exit Charts.
+
*Ähnlich verhalten sich die&nbsp; [https://en.wikipedia.org/wiki/Low-density_parity-check_code LDPC–Codes]&nbsp; ("Low Density Parity–check Codes")&nbsp; mit konstanter Codelänge&nbsp; $n = 64800$ &nbsp;  &nbsp; weiße Rechtecke.&nbsp; Sie werden seit 2006 bei&nbsp; [https://de.wikipedia.org/wiki/DVB-S DVB–S2]&nbsp; ("Digital Video Broadcast over Satellite")&nbsp; eingesetzt und eignen sich aufgrund der spärlichen Einsen–Belegung der Prüfmatrix sehr gut für die iterative Decodierung mittels&nbsp; [https://en.wikipedia.org/wiki/Factor_graph Faktor–Graphen]&nbsp; und&nbsp; [https://en.wikipedia.org/wiki/EXIT_chart Exit Charts].
*Schwarze Punkte markieren die von CCSDS spezifizierten LDPC–Codes mit konstanter Anzahl an Informationsbits ( $k$ = 16384 ) und variabler Codewortlänge $n = k/R$. Diese Codeklasse erfordert ein ähnliches $E_B/N_0$ wie die roten Kreuze und die weißen Rechtecke.
+
*Schwarze Punkte markieren die von&nbsp; $\rm CCSDS$&nbsp; spezifizierten&nbsp; [https://de.wikipedia.org/wiki/Low-Density-Parity-Check-Code LDPC–Codes]&nbsp; mit konstanter Anzahl an Informationsbits&nbsp; $(k = 16384)$&nbsp; und variabler Wortlänge&nbsp; $n = k/R$.&nbsp; Diese Codeklasse erfordert ein ähnliches&nbsp; $E_{\rm B}/N_0$&nbsp; wie die roten Kreuze und die weißen Rechtecke.
 +
 
 +
*Um das Jahr 2000 hatten viele Forscher den Ehrgeiz, sich der Shannon–Grenze bis auf Bruchteile von einem&nbsp; $\rm dB$&nbsp; anzunähern.&nbsp; Das gelbe Kreuz markiert ein solches Ergebnis&nbsp; $(0.0045 \ \rm dB)$&nbsp; von&nbsp; [CFRU01]<ref name='CFRU01'>
 +
Chung S.Y; Forney Jr., G.D.; Richardson, T.J.; Urbanke, R.: On the Design of Low-Density Parity- Check Codes within 0.0045 dB of the Shannon Limit. – <br>In: IEEE Communications Letters, vol. 5, no. 2 (2001), pp. 58–60.</ref>&nbsp; mit einem irregulären LDPC–Code der Rate&nbsp; $ R =1/2$&nbsp; und der Länge&nbsp; $n = 10^7$.}}
  
  
Um die Jahrhundertwende hatten viele Forscher den Ehrgeiz, sich der Shannon–Grenze bis auf Bruchteile von einem dB anzunähern. Das gelbe Kreuz markiert ein derartiges Ergebnis (0.0045 dB) von Chung et al. aus dem Jahr 2001. Verwendet wurde ein irregulärer LDPC–Code mit Rate $1/2$ und Codelänge $10^7$.
+
{{BlaueBox|TEXT=
An dieser Stelle soll nochmals die Brillianz und der Weitblick von [https://de.wikipedia.org/wiki/Claude_Shannon Claude E. Shannon] hervorgehoben werden. Er hat 1948 eine bis dahin nicht bekannte Theorie entwickelt, mit der die Möglichkeiten, aber auch die Grenzen der Digitalsignalübertragung aufgezeigt werden. Zu dieser Zeit waren die ersten Überlegungen zur digitalen Nachrichtenübertragung gerade mal zehn Jahre alt  ⇒ Pulscodemodulation (Alec Reeves, 1938) und selbst der Taschenrechner kam erst mehr als 20 Jahre später. Shannon's Arbeiten zeigen uns, dass man auch ohne gigantische Computer Großes leisten kann.
+
$\text{Fazit:}$&nbsp;
 +
An dieser Stelle soll nochmals die Brillanz und der Weitblick von&nbsp; [https://de.wikipedia.org/wiki/Claude_Shannon Claude E. Shannon]&nbsp; hervorgehoben werden:
 +
*Er hat 1948 eine bis dahin nicht bekannte Theorie entwickelt, mit der die Möglichkeiten, aber auch die Grenzen der Digitalsignalübertragung aufgezeigt werden.  
 +
*Zu dieser Zeit waren die ersten Überlegungen zur digitalen Nachrichtenübertragung gerade mal zehn Jahre alt  &nbsp; &nbsp; [[Modulationsverfahren/Pulscodemodulation|Pulscodemodulation]]&nbsp; ([https://de.wikipedia.org/wiki/Alec_Reeves Alec Reeves], 1938) und selbst der Taschenrechner kam erst mehr als zwanzig Jahre später.  
 +
*Shannon's Arbeiten zeigen uns, dass man auch ohne gigantische Computer Großes leisten kann.}}
  
  
 
== Kanalkapazität des komplexen AWGN–Kanals==   
 
== Kanalkapazität des komplexen AWGN–Kanals==   
 +
<br>
 +
Höherstufige Modulationsverfahren können jeweils durch eine Inphase– und eine Quadraturkomponente dargestellt werden.&nbsp; Hierzu gehören zum Beispiel
 +
*die&nbsp; [[Modulationsverfahren/Quadratur–Amplitudenmodulation#QAM.E2.80.93Signalraumkonstellationen|M–QAM]]&nbsp; &nbsp; ⇒  &nbsp; Quadraturamplitudenmodulation;&nbsp; $M ≥ 4$&nbsp; quadratisch angeordnete Signalraumpunkte,
 +
*die&nbsp; [[Modulationsverfahren/Quadratur–Amplitudenmodulation#Weitere_Signalraumkonstellationen|M–PSK]]  &nbsp; ⇒  &nbsp;  $M ≥ 4$&nbsp; Signalraumpunkte in kreisförmiger Anordnung.
  
Höherstufige Modulationsverfahren wie
 
*[[Modulationsverfahren/Quadratur–Amplitudenmodulation#QAM.E2.80.93Signalraumkonstellationen|M–QAM]]  ⇒  Quadraturamplitudenmodulation; $M$ ≥ 4 quadratische Signalraumpunkte
 
*[[Modulationsverfahren/Quadratur–Amplitudenmodulation#Weitere_Signalraumkonstellationen|M–PSK]]  ⇒  $M$ ≥ 4 Signalraumpunkte in kreisförmiger Anordnung
 
  
können jeweils durch eine Inphase– und eine Quadraturkomponente dargestellt werden. Die beiden Komponenten lassen sich im [[Signaldarstellung/Äquivalentes_Tiefpass-Signal_und_zugehörige_Spektralfunktion#Motivation|äquivalenten Tiefpassbereich]] auch als ''Realteil'' bzw. ''Imaginärteil'' eines komplexen Rauschterms $N$ beschreiben.
+
Die beiden Komponenten lassen sich im&nbsp; [[Signaldarstellung/Äquivalentes_Tiefpass-Signal_und_zugehörige_Spektralfunktion#Motivation|äquivalenten Tiefpassbereich]]&nbsp; auch als&nbsp; Realteil &nbsp;bzw. Imaginärteil &nbsp;eines komplexen Rauschterms&nbsp; $N$&nbsp; beschreiben.
Alle oben genannten Verfahren sind zweidimensional. Der (komplexe) AWGN–Kanal stellt somit $K$ = 2 voneinander unabhängige Gaußkanäle zur Verfügung. Entsprechend [[Informationstheorie/AWGN–Kanalkapazität_bei_wertkontinuierlichem_Eingang#Parallele_Gau.C3.9Fsche_Kan.C3.A4le|Kapitel 4.2]] ergibt sich deshalb für die Kapazität dieses Kanals:
+
*Alle oben genannten Verfahren sind zweidimensional.  
+
*Der (komplexe) AWGN–Kanal stellt somit &nbsp;$K = 2$&nbsp; voneinander unabhängige Gaußkanäle zur Verfügung.  
$$C_{\rm Gauss, \hspace{0.1cm}komplex}= C_{\rm Gesamt} ( K=2)  
+
*Entsprechend der Seite&nbsp;  [[Informationstheorie/AWGN–Kanalkapazität_bei_wertkontinuierlichem_Eingang#Parallele_Gau.C3.9Fsche_Kan.C3.A4le|Parallele  Gaußsche Kanäle]]&nbsp; ergibt sich deshalb für die Kapazität eines solchen Kanals:
 +
[[Datei:P_ID2955__Inf_T_4_3_S7.png|right|frame|2D–WDF des komplexen <br>Gaußschen Rauschens]]
 +
:$$C_{\text{ Gauß, komplex} }= C_{\rm Gesamt} ( K=2)  
 
=  {\rm log}_2 \hspace{0.1cm} ( 1 + \frac{P_X/2}{\sigma^2})  
 
=  {\rm log}_2 \hspace{0.1cm} ( 1 + \frac{P_X/2}{\sigma^2})  
 
\hspace{0.05cm}.$$
 
\hspace{0.05cm}.$$
  
*Die gesamte Nutzleistung von Inphase– und Quadraturkomponente wird mit $P_X$ bezeichnet.
+
*$P_X$&nbsp; bezeichnet die gesamte Nutzleistung von Inphase– und Quadraturkomponente.
*Dagegen bezieht sich die Varianz $σ^2$ der Störung nur auf eine Dimension: $σ^2 = σ_I^2 = σ_Q^2$.
+
*Dagegen bezieht sich die Varianz&nbsp; $σ^2$&nbsp; der Störung nur auf eine Dimension: &nbsp; $σ^2 = σ_{\rm I}^2 = σ_{\rm Q}^2$.
  
[[Datei:P_ID2955__Inf_T_4_3_S7.png|2D–WDF des Komplexen Gaußschen Rauschens]]
 
  
Die rechte Abbildung zeigt die 2D–WDF $f_N(n)$ des Gaußschen Rauschprozesses $N$ über den beiden Achsen
+
Die Skizze zeigt die 2D–WDF&nbsp; $f_N(n)$&nbsp; des Gaußschen Rauschprozesses&nbsp; $N$&nbsp; über den beiden Achsen
* $N_I$ (Inphase–Anteil, Realteil) und
+
* $N_{\rm I}$&nbsp; (Inphase–Anteil, Realteil) und
* $N_Q$ (Quadraturanteil, Imaginärteil).
+
* $N_{\rm Q}$&nbsp; (Quadraturanteil, Imaginärteil).
  
Dunklere Bereiche der rotationssymmetrischen WDF $f_N(n)$ um den Nullpunkt weisen auf mehr Störanteile hin. Für die Varianz des komplexen Gaußschen Rauschens $N$ gilt aufgrund der Rotationsinvarianz $(σ_R = σ_I)$ folgender Zusammenhang:
+
 
+
Dunklere Bereiche der rotationssymmetrischen WDF&nbsp; $f_N(n)$&nbsp; um den Nullpunkt weisen auf mehr Störanteile hin.&nbsp; Für die Varianz des komplexen Gaußschen Rauschens&nbsp; $N$&nbsp; gilt aufgrund der Rotationsinvarianz&nbsp; $(σ_{\rm I} = σ_{\rm Q})$&nbsp; folgender Zusammenhang:
$$\sigma_N^2 = \sigma_{\rm I}^2 + \sigma_{\rm Q}^2 = 2\cdot \sigma^2  
+
:$$\sigma_N^2 = \sigma_{\rm I}^2 + \sigma_{\rm Q}^2 = 2\cdot \sigma^2  
 
\hspace{0.05cm}.$$
 
\hspace{0.05cm}.$$
  
 
Damit lässt sich die Kanalkapazität auch wie folgt ausdrücken:
 
Damit lässt sich die Kanalkapazität auch wie folgt ausdrücken:
 
   
 
   
$$C_{\rm Gau\ss, \hspace{0.1cm}komplex}= {\rm log}_2 \hspace{0.1cm} ( 1 + \frac{P_X}{\sigma_N^2})  = {\rm log}_2 \hspace{0.1cm} ( 1 + SNR)
+
:$$C_{\text{ Gauß, komplex} }= {\rm log}_2 \hspace{0.1cm} ( 1 + \frac{P_X}{\sigma_N^2})  = {\rm log}_2 \hspace{0.1cm} ( 1 + SNR)
 
\hspace{0.05cm}.$$
 
\hspace{0.05cm}.$$
  
Diese Gleichung wird auf der nächsten Seite numerisch ausgewertet. Bereits aus dieser Gleichung ist zu ersehen, dass für das Signal–zu–Störleistungsverhältnis gilt:
+
Die Gleichung wird auf der nächsten Seite numerisch ausgewertet.&nbsp; Man kann aber jetzt schon sagen, dass für das Signal–zu–Störleistungsverhältnis gelten wird:  
+
:$$SNR = {P_X}/{\sigma_N^2}
$$SNR = {P_X}/{\sigma_N^2}
 
 
\hspace{0.05cm}.$$
 
\hspace{0.05cm}.$$
  
 
==Maximale Coderate für QAM–Strukturen== 
 
==Maximale Coderate für QAM–Strukturen== 
 
+
<br>
In der Grafik ist die Kanalkapazität des komplexen AWGN–Kanals als rote Kurve dargestellt:
+
[[Datei:P_ID2956__Inf_T_4_3_S8_neu.png|right|frame|Kanalkapazität von BPSK und&nbsp; $M$–QAM]]
 
+
Die Grafik zeigt die Kapazität des komplexen AWGN–Kanals als rote Kurve:
$$C_{\rm Gau\ss, \hspace{0.1cm}komplex}= {\rm log}_2 \hspace{0.1cm} ( 1 + SNR)
+
:$$C_{\text{ Gauß, komplex} }= {\rm log}_2 \hspace{0.1cm} ( 1 + SNR)
 
\hspace{0.05cm}.$$
 
\hspace{0.05cm}.$$
+
*Die Einheit dieser Kanalkapazität ist „bit/Kanalzugriff” oder „bit/Quellensymbol”.  
Die Einheit dieser Kanalkapazität ist wieder „bit/Kanalzugriff” oder „bit/Quellensymbol”. Als Abszisse ist der Signal–zu–Störleistungsverhältnis 10 · log (SNR) mit $\text{SNR} = P_X/σ_N^2$ aufgetragen.
+
*Die Abszisse bezeichnet das Signal–zu–Störleistungsverhältnis&nbsp; $10 · \lg (SNR)$&nbsp; mit&nbsp; ${SNR} = P_X/σ_N^2$.
Die rote Kurve basiert entsprechend der Shannon–Theorie wieder auf einer Gaußverteilung $f_X(x)$ am Eingang. Zusätzlich eingezeichnet sind zehn weitere Kapazitätskurven für wertdiskreten Eingang:
+
*Die Grafik wurde&nbsp; [Göb10]<ref name='Göb10'>Göbel, B.:&nbsp; Information–Theoretic Aspects of Fiber–Optic Communication Channels. Dissertation. TU München. <br>Verlag Dr. Hut, Reihe Informationstechnik, ISBN 978-3-86853-713-0, 2010.</ref>&nbsp; entnommen.&nbsp; Wir danken unserem ehemaligen Kollegen&nbsp; [[Biografien_und_Bibliografien/Beteiligte_der_Professur_Leitungsgebundene_Übertragungstechnik#Dr.-Ing._Bernhard_Göbel_(bei_LÜT_von_2004-2010)|Bernhard Göbel]],&nbsp; für sein Einverständnis, diese Abbildung verwenden zu dürfen, sowie für die große Unterstützung unseres Lerntutorials während seiner gesamten aktiven Zeit.
  
[[Datei:P_ID2956__Inf_T_4_3_S8_neu.png|Kanalkapazität von BPSK und <i>M</i>–QAM]]
 
  
*die BPSK (mit „1” markiert),
+
Die rote Kurve basiert entsprechend der Shannon–Theorie wieder auf einer Gaußverteilung&nbsp; $f_X(x)$&nbsp; am Eingang.&nbsp; Zusätzlich eingezeichnet sind zehn weitere Kapazitätskurven für wertdiskreten Eingang:
*die M–QAM, ( $M$ = 22, ..., 210 ).
+
*die Kurve für&nbsp; [[Modulationsverfahren/Lineare_digitale_Modulationsverfahren#BPSK_.E2.80.93_Binary_Phase_Shift_Keying|Binary Phase Shift Keying]]&nbsp; $($BPSKmit „1” markiert &nbsp; &rArr; &nbsp;  $K = 1)$,
 +
*die &nbsp;[[Modulationsverfahren/Quadratur–Amplitudenmodulation#QAM.E2.80.93Signalraumkonstellationen|$M$&ndash;stufige Quadratur–Amplitudenmodulation]]&nbsp; $($mit $M = 2^K, K  = 2$, ... , $10)$.
 +
<br clear=all>
 +
Man erkennt aus dieser Darstellung:
 +
*Alle Kurven&nbsp; (BPSK und&nbsp; $M$–QAM)&nbsp; liegen rechts von der roten Shannon–Grenzkurve.&nbsp; Bei kleinem&nbsp; $SNR$&nbsp; sind diese Kurven von der roten Kurve fast nicht unterscheidbar.
 +
*Der Endwert aller Kurven für wertdiskreten Eingang ist&nbsp; $K = \log_2 (M)$.&nbsp; Für&nbsp; $SNR  \to ∞$&nbsp; erhält man&nbsp; $C_{\rm BPSK} = 1$&nbsp; (bit/Kanalzugriff) &nbsp;sowie&nbsp; $C_{\rm 4-QAM} = C_{\rm QPSK} = 2$.
 +
*Die blauen Markierungen zeigen, dass eine&nbsp; $\rm 2^{10}–QAM$&nbsp; mit &nbsp;$10 · \lg (SNR) ≈ 27 \ \rm dB$&nbsp; eine Coderate von &nbsp;$R ≈ 8.2$&nbsp; ermöglicht.&nbsp; Abstand zur Shannon–Kurve: &nbsp;$1.53\ \rm dB$.
 +
*Der&nbsp; "Shaping Gain"&nbsp; beträgt demnach&nbsp; $10 · \lg (π \cdot {\rm e}/6) = 1.53 \ \rm dB$.&nbsp; Diese Verbesserung lässt sich erzielen, wenn man die Lage der&nbsp; $2^{10} = 32^2$&nbsp; quadratisch angeordneten Signalraumpunkte so ändert, dass sich eine gaußähnliche Eingangs–WDF ergibt &nbsp; ⇒  &nbsp;"Signal Shaping".
  
Diese Grafik wurde der Dissertation <ref>Göbel, B.: ''Information–Theoretic Aspects of Fiber–Optic Communication Channels''. Dissertation. TU München. Verlag Dr. Hut, Reihe Informationstechnik, ISBN 978-3-86853-713-0, 2010.</ref> entnommen. Wir danken unserem ehemaligen Kollegen am LNT, Dr.-Ing. Bernhard Göbel, für sein Einverständnis, diese Abbildung verwenden zu dürfen, sowie für seine Unterstützung unseres Lerntutorials.
 
  
 
+
{{BlaueBox|TEXT=
Man erkennt aus dieser Darstellung:
+
$\text{Fazit:}$&nbsp;
*Die BPSK–Kurve sowie alle $M$–QAM–Kurven liegen rechts von der Shannon–Grenzkurve. Bei kleinem SNR sind alle Kurven von der roten Kurve fast nicht mehr zu unterscheiden.
+
In der&nbsp; [[Aufgaben:4.Zehn_QPSK–Kanalkapazität| Aufgabe 4.10]]&nbsp; werden die AWGN–Kapazitätskurven von BPSK und QPSK diskutiert:
*Der Endwert aller Kurven für wertdiskrete Eingangssignale ist $\log_2 (M)$. Für SNR → $∞$ erhält man beispielsweise $C_{\rm BPSK}$ = 1 bit/Symbol sowie $C_{\rm 4-QAM}$ = $C_{\rm QPSK}$ = 2 bit/Symbol.
+
*Ausgehend von der Abszisse&nbsp;  $10 · \lg (E_{\rm B}/N_0)$&nbsp; mit&nbsp; $E_{\rm B}$&nbsp; (Energie pro Informationsbit)&nbsp; kommt man zur QPSK–Kurve durch Verdopplung der BPSK–Kurve:
*Die blauen Markierungen zeigen, dass eine $2^{10}$–QAM mit 10 · lg (SNR) ≈ 27 dB eine Coderate von $R$ ≈ 8,2 ermöglicht. Der Abstand zur Shannon–Kurve beträgt hier 1.53 dB.
+
:$$C_{\rm QPSK}\big [10 \cdot {\rm lg} \hspace{0.1cm}(E_{\rm B}/{N_0})\big ]
*Man spricht hier von einem ''Shaping Gain'' von 10 · lg $(πe$/6) = 1.53 dB. Diese Verbesserung lässt sich erzielen, wenn man die Lage der $32^2$ quadratisch angeordneten Signalraumpunkte so ändern würde, dass sich eine gaußähnliche Eingangs–WDF ergibt ⇒  ''Signal Shaping''.
 
 
 
In der Aufgabe A4.10 werden die AWGN–Kapazitätskurven von BPSK und QPSK diskutiert:
 
*Ausgehend von der Abszisse 10 · lg $(E_B/N_0)$ mit der Energie $E_B$ pro Informationsbit kommt man zur QPSK–Kurve durch Verdopplung der BPSK–Kurve:
 
 
$$C_{\rm QPSK}(10 \cdot {\rm lg} \hspace{0.1cm}(E_{\rm B}/{N_0}))
 
 
=
 
=
2 \cdot C_{\rm BPSK}(10 \cdot {\rm lg} \hspace{0.1cm}(E_{\rm B}/{N_0}) ) .$$
+
2 \cdot C_{\rm BPSK}\big [10 \cdot {\rm lg} \hspace{0.1cm}(E_{\rm B}/{N_0}) \big ] .$$
  
*Vergleicht man aber BPSK und QPSK bei gleicher Energie pro Informationssymbol $(E_S)$, so gilt:
+
*Vergleicht man aber BPSK und QPSK bei gleicher Energie&nbsp; $E_{\rm S}$&nbsp; pro Informationssymbol, so gilt:
 
+
:$$C_{\rm QPSK}[10 \cdot {\rm lg} \hspace{0.1cm}(E_{\rm S}/{N_0})]
$$C_{\rm QPSK}(10 \cdot {\rm lg} \hspace{0.1cm}E_{\rm S}/{N_0})  
 
 
=
 
=
2 \cdot C_{\rm BPSK}(10 \cdot {\rm lg} \hspace{0.1cm}E_{\rm S}/{N_0} - 3\,{\rm dB}) .$$
+
2 \cdot C_{\rm BPSK}[10 \cdot {\rm lg} \hspace{0.1cm}(E_{\rm S}/{N_0}) - 3\,{\rm dB}] .$$
 
   
 
   
Hierbei ist berücksichtigt, dass bei QPSK die Energie in einer Dimension nur $E_S$/2 beträgt.
+
:Hierbei ist berücksichtigt, dass bei QPSK die Energie in einer Dimension nur&nbsp; $E_{\rm S}/2$&nbsp; beträgt.}}
 
   
 
   
== Aufgaben zu Kapitel 4.3 ==
+
== Aufgaben zum Kapitel ==
 +
<br>
 +
[[Aufgaben:4.8 Numerische Auswertung der AWGN-Kanalkapazität|Aufgabe 4.8: Numerische Auswertung der AWGN-Kanalkapazität]]
 +
 
 +
[[Aufgaben:4.8Z Was sagt die AWGN-Kanalkapazitätskurve aus?|Aufgabe 4.8Z: Was sagt die AWGN-Kanalkapazitätskurve aus?]]
 +
 
 +
[[Aufgaben:4.9 Höherstufige Modulation|Aufgabe 4.9: Höherstufige Modulation]]
 +
 
 +
[[Aufgaben:4.9Z Ist bei BPSK die Kanalkapazität C ≡ 1 möglich?|Aufgabe 4.9Z:  Ist bei BPSK die Kanalkapazität $C ≡ 1$ möglich?]]
 +
 
 +
[[Aufgaben:Aufgabe_4.Zehn:_QPSK–Kanalkapazität|Aufgabe 4.10: &nbsp; QPSK–Kanalkapazität]]
  
 +
== Quellenverzeichnis==
  
  
 
{{Display}}
 
{{Display}}

Aktuelle Version vom 28. August 2021, 13:24 Uhr

AWGN–Modell für zeitdiskrete bandbegrenzte Signale


Am Ende des  letzten Kapitels  wurde das AWGN–Modell entsprechend der linken Grafik verwendet, gekennzeichnet durch die beiden Zufallsgrößen  $X$  und  $Y$  am Eingang und Ausgang sowie die stochastische Störung  $N$  als das Ergebnis eines mittelwertfreien Gaußschen Zufallsprozesses   ⇒   „Weißes Rauschen” mit der Varianz  $σ_N^2$.  Die Störleistung  $P_N$  ist ebenfalls gleich  $σ_N^2$.

Zwei weitgehend äquivalente Modelle für den AWGN–Kanal

Die maximale Transinformation  $I(X; Y)$  zwischen Eingang und Ausgang   ⇒   Kanalkapazität  $C$  ergibt sich dann, wenn eine Gaußsche Eingangs–WDF $f_X(x)$  vorliegt.  Mit der Sendeleistung  $P_X = σ_X^2$   ⇒   Varianz der Zufallsgröße  $X$  lautet die Kanalkapazitätsgleichung:

$$C = 1/2 \cdot {\rm log}_2 \hspace{0.1cm} ( 1 + {P_X}/{P_N}) \hspace{0.05cm}.$$

Nun beschreiben wir das AWGN–Kanalmodell gemäß dem rechts skizzierten Fall, dass am Kanaleingang die Folge  $〈X_ν〉$  anliegt, wobei der Abstand zwischen aufeinander folgenden Werten  $T_{\rm A}$  beträgt.  Diese Folge ist das zeitdiskrete Äquivalent des zeitkontinuierlichen Signals  $X(t)$  nach Bandbegrenzung und Abtastung.

Der Zusammenhang zwischen beiden Modellen kann anhand einer Grafik hergestellt werden, die anschließend genauer beschrieben wird.

  Die  $\text{wesentlichen Erkenntnisse}$  vorneweg:

  • Beim rechten Modell gilt zu den Abtastzeitpunkten  $ν·T_{\rm A}$  der gleiche Zusammenhang  $Y_ν = X_ν + N_ν$  wie beim linken Modell.
  • Die Störkomponente  $N_ν$  ist nun durch  $($auf  $±B)$  bandbegrenztes Weißes Rauschen mit der zweiseitigen Leistungsdichte  ${\it Φ}_N(f) = N_0/2$  zu modellieren,
    wobei  $B = 1/(2T_{\rm A})$  gelten muss   ⇒  siehe  Abtasttheorem.


$\text{ Interpretation:}$

Beim modifizierten Modell gehen wir von einer unendlichen Folge  $〈X_ν〉$  von Gaußschen Zufallsgrößen aus, die einem  Diracpuls  $p_δ(t)$  eingeprägt werden.  Das resultierende zeitdiskrete Signal lautet somit:

AWGN–Modell unter Berücksichtigung von Zeitdiskretisierung und Bandbegrenzung
$$X_{\delta}(t) = T_{\rm A} \cdot \hspace{-0.1cm} \sum_{\nu = - \infty }^{+\infty} X_{\nu} \cdot \delta(t- \nu \cdot T_{\rm A} )\hspace{0.05cm}.$$

Der Abstand aller (gewichteten) Diracfunktionen ist einheitlich  $T_{\rm A}$.  Durch das Interpolationsfilter mit Impulsantwort  $h(t)$  sowie Frequenzgang  $H(f)$,

$$h(t) = 1/T_{\rm A} \cdot {\rm sinc}(t/T_{\rm A}) \quad \circ\!\!\!-\!\!\!-\!\!\!-\!\!\bullet \quad H(f) = \left\{ \begin{array}{c} 1 \\ 0 \\ \end{array} \right. \begin{array}{*{20}c} {\rm{f\ddot{u}r}} \hspace{0.3cm} |f| \le B, \\ {\rm{f\ddot{u}r}} \hspace{0.3cm} |f| > B, \\ \end{array},$$

wobei die  (einseitige)  Bandbreite  $B = 1/(2T_{\rm A})$  ist,  entsteht das zeitkontinuierliche Signal  $X(t)$  mit folgenden Eigenschaften:

  • Die Abtastwerte  $X(ν·T_{\rm A})$  sind für alle ganzzahligen  $ν$  identisch mit den Eingangswerten  $X_ν$, was mit den äquidistanten Nullstellen der Funktion  $\text{sinc}(x) = \sin(\pi x)/(\pi x)$  begründet werden kann.
  • Gemäß dem Abtasttheorem ist  $X(t)$  auf den Spektralbereich  $±B$  ideal bandbegrenzt   ⇒   wegen rechteckförmigem Frequenzgang  $H(f)$.


$\text{Störleisungsbetrachtung:}$  Nach der Addition der Störkomponente  $N(t)$  mit der (zweiseitigen) Leistungsdichte   ${\it Φ}_N(t) = N_0/2$  folgt das Matched–Filter  $\rm (MF)$  mit  $\rm sinc$–förmiger Impulsantwort.  Für die  Störleistung am MF–Ausgang  gilt dann:

$$P_N = {\rm E}\big[N_\nu^2 \big] = \frac{N_0}{2T_{\rm A} } = N_0 \cdot B\hspace{0.05cm}.$$


$\text{Beweis:}$  Mit  $B = 1/(2T_{\rm A} )$  erhält man für die Impulsantwort  $h_{\rm E}(t)$  und die Spektralfunktion  $H_{\rm E}(f)$:

$$h_{\rm E}(t) = 2B \cdot {\rm sinc}(2 B \cdot t) \quad \circ\!\!\!-\!\!\!-\!\!\!-\!\!\bullet \quad H_{\rm E}(f) = \left\{ \begin{array}{c} 1 \\ 0 \\ \end{array} \right. \begin{array}{*{20}c} \text{für} \hspace{0.3cm} \vert f \vert \le B, \\ \text{für} \hspace{0.3cm} \vert f \vert > B. \\ \end{array} $$

Daraus folgt entsprechend den Erkenntnissen der  Stochastischen Systemtheorie:

$$P_N = \int_{-\infty}^{+\infty} \hspace{-0.3cm} {\it \Phi}_N (f) \cdot \vert H_{\rm E}(f)\vert^2 \hspace{0.15cm}{\rm d}f = \int_{-B}^{+B} \hspace{-0.3cm} {\it \Phi}_N (f) \hspace{0.15cm}{\rm d}f = \frac{N_0}{2} \cdot 2B = N_0 \cdot B \hspace{0.05cm}.$$


Weiter gilt:

  • Tastet man das Matched–Filter–Ausgangssignal in äquidistanten Abständen  $T_{\rm A}$  ab, so ergibt sich für die Zeitpunkte  $ν ·T_{\rm A}$  die gleiche Konstellation wie bisher, nämlich:   $Y_ν = X_ν + N_ν$.
  • Der Störanteil  $N_ν$  im zeitdiskreten Ausgangssignal   $Y_ν$  ist somit „bandbegrenzt” und „weiß”   ⇒   Die Kanalkapazitätsgleichung muss nur geringfügig angepasst werden.
  • Mit  $E_{\rm S} = P_X \cdot T_{\rm A}$   ⇒   Sende–Energie innerhalb einer „Symboldauer”  $T_{\rm A}$   ⇒   Exergie pro Symbol  gilt dann:
$$C = {1}/{2} \cdot {\rm log}_2 \hspace{0.1cm} ( 1 + \frac {P_X}{N_0 \cdot B}) = {1}/{2} \cdot {\rm log}_2 \hspace{0.1cm} ( 1 + \frac {2 \cdot P_X \cdot T_{\rm A}}{N_0}) = {1}/{2} \cdot {\rm log}_2 \hspace{0.1cm} ( 1 + \frac {2 \cdot E_{\rm S}}{N_0}) \hspace{0.05cm}.$$


Die Kanalkapazität  $C$  als Funktion von  $E_{\rm S}/N_0$


Kanalkapazitäten  $C$  und  $C^{\hspace{0.05cm}*}$  über  $E_{\rm S}/N_0$

$\text{Beispiel 1:}$  Die Grafik zeigt den Verlauf der AWGN–Kanalkapazität in Abhängigkeit des Quotienten  $E_{\rm S}/N_0$, wobei die linke Koordinatenachse und die roten Beschriftungen gültig sind:

$$C = {1}/{2} \cdot {\rm log}_2 \hspace{0.1cm} ( 1 + \frac { 2 \cdot E_{\rm S} }{N_0}) \hspace{0.5cm}{\rm Einheit\hspace{-0.15cm}: \hspace{0.05cm}bit/Kanalzugriff} \hspace{0.05cm}.$$

Die (Pseudo–)Einheit wird manchmal auch mit „bit/Quellensymbol” oder kurz „bit/Symbol” bezeichnet.

Die rechte (blaue) Achsenbeschriftung berücksichtigt die Beziehung  $B = 1/(2T_{\rm A})$  und liefert somit eine obere Schranke für die Bitrate  $R$  eines Digitalsystems, die bei diesem AWGN–Kanal noch möglich ist.

$$C^{\hspace{0.05cm}*} = \frac{C}{T_{\rm A} } = B \cdot {\rm log}_2 \hspace{0.1cm} ( 1 + \frac { 2 \cdot E_{\rm S} }{N_0}) \hspace{0.5cm}{\rm Einheit\hspace{-0.15cm}: \hspace{0.05cm}bit/Sekunde} \hspace{0.05cm}.$$


AWGN–Kanalkapazitäten  $C$  und  $C^{\hspace{0.05cm}*}$  als Funktion von  $10 \cdot \lg \ E_{\rm S}/N_0$

$\text{Beispiel 2:}$  Oft gibt man den Quotienten aus Symbolenergie  $(E_{\rm S})$  und AWGN–Rauschleistungsdichte  $(N_0)$  logarithmisch an.

  • Diese Grafik zeigt die Kanalkapazitäten  $C$  bzw.  $C^{\hspace{0.05cm}*}$  als Funktion von  $10 · \lg (E_{\rm S}/N_0)$  im Bereich von  $-20 \ \rm dB$  bis  $+30 \ \rm dB$.


  • Oberhalb von  $\approx 10 \ \rm dB$  ergibt sich hier ein (nahezu) linearer Verlauf.

Systemmodell zur Interpretation der AWGN–Kanalkapazität


Um das  Kanalcodierungstheorem  im Zusammenhang mit dem AWGN–Kanal besprechen zu können, benötigen wir noch eine „Codiervorrichtung”, die hier allerdings informationstheoretisch allein durch die Coderate  $R$  gekennzeichnet wird.

Modell zur Interpretation der AWGN–Kanalkapazität

Die Grafik beschreibt das von Shannon betrachtete Nachrichtensystem mit den Blöcken Quelle,  Coder,  (AWGN–)Kanal,  Decoder  und  Empfänger.   Im Hintergrund erkennt man ein Originalbild aus einem Aufsatz über die Shannon–Theorie.  Rot eingezeichnet wurden von uns nur einige Bezeichnungen und Erläuterungen für den folgenden Text:

  • Das Quellensymbol  $U$  entstammt einem Alphabet mit  $M_U = |U| = 2^k$  Symbolen und kann durch  $k$  gleichwahrscheinliche statistisch unabhängige Binärsymbole repräsentiert werden.
  • Das Alphabet des Codesymbols  $X$  hat den Symbolumfang  $M_X = |X| = 2^n$, wobei sich  $n$  aus der Coderate  $R = k/n$  ergibt.
  • Für die Coderate  $R = 1$  gilt somit  $n = k$  und der Fall  $n > k$  führt zu einer Coderate  $R < 1$.


  $\rm Kanalcodierungstheorem:$ 

Dieses besagt, dass es (mindestens) einen Code der Rate  $R$  gibt,  der zur Symbolfehlerwahrscheinlichkeit  $p_{\rm S} = \text{Pr}(V ≠ U) \equiv 0$  führt,  falls folgende Bedingungen erfüllt sind:

  • Die Coderate  $R$  ist nicht größer als die Kanalkapazität  $C$.
  • Ein solcher geeigneter Code ist unendlich lang:   $n → ∞$.  Deshalb ist auch tatsächlich eine Gaußverteilung  $f_X(x)$  am Kanaleingang möglich, die der bisherigen Berechnung der AWGN–Kanalkapazität stets zugrunde gelegt wurde:
$$C = {1}/{2} \cdot {\rm log}_2 \hspace{0.1cm} ( 1 + \frac { 2 \cdot E_{\rm S} }{N_0}) \hspace{1.3cm}{\rm Einheit\hspace{-0.15cm}: \hspace{0.05cm}bit/Kanalzugriff\hspace{0.15cm} (englisch\hspace{-0.15cm}: \hspace{0.05cm}bit/channel \hspace{0.15cm}use)} \hspace{0.05cm}.$$
  • Die Kanaleingangsgröße  $X$  ist also wertkontinuierlich.  Gleiches gilt für  $U$  und für die Größen  $Y$,  $V$  nach dem AWGN–Kanal.
  • Für einen Systemvergleich ist die  "Energie pro Symbol"  $(E_{\rm S} )$  allerdings ungeeignet. 
  • Ein Vergleich sollte vielmehr auf der  "Energie pro Informationsbit"   ⇒   kurz:  "Energie pro Bit" $(E_{\rm B})$  basieren.  Mit  $E_{\rm B} = E_{\rm S}/R$  gilt somit auch:
$$C = {1}/{2} \cdot {\rm log}_2 \hspace{0.1cm} ( 1 + \frac { 2 \cdot R \cdot E_{\rm B} }{N_0}) \hspace{0.7cm}{\rm Einheit\hspace{-0.15cm}: \hspace{0.05cm}bit/Kanalzugriff\hspace{0.1cm} (englisch\hspace{-0.15cm}: \hspace{0.05cm}bit/channel \hspace{0.15cm}use)} \hspace{0.05cm}.$$

Diese beiden Gleichungen werden auf der nächsten Seite diskutiert.


Die Kanalkapazität  $C$  als Funktion von  $E_{\rm B}/N_0$


Die AWGN–Kanalkapazität  $C$  in zwei unterschiedlichen Darstellungen.
     Die Preudo–Einheit  "bit/Symbol"  ist identisch mit  "bit/Kanalzugriff".

$\text{Beispiel 3:}$  Die Grafik zu diesem Beispiel zeigt die AWGN–Kanalkapazität  $C$ 

  • als Funktion von  $10 · \lg (E_{\rm S}/N_0)$   ⇒   roter Kurvenverlauf:
$$C = {1}/{2} \cdot {\rm log}_2 \hspace{0.1cm} ( 1 + \frac { 2 \cdot E_{\rm S} }{N_0}); \hspace{1.0cm}{\rm Einheit\hspace{-0.15cm}: \hspace{0.05cm}bit/Symbol} \hspace{0.05cm}.$$
Rote Zahlenwerte:  Kapazität  $C$  in  „bit/Symbol”  für Abszissen
    $10 · \lg (E_{\rm S}/N_0) = -20 \ \rm dB, -15 \ \rm dB$, ... , $+30\ \rm dB$;
  • als Funktion von  $10 · \lg (E_{\rm B}/N_0)$   ⇒   grüner Kurvenverlauf:
$$C = {1}/{2} \cdot {\rm log}_2 \hspace{0.1cm} ( 1 + \frac { 2 \cdot R \cdot E_{\rm B} }{N_0}) ; \hspace{0.8cm}{\rm Einheit\hspace{-0.15cm}: \hspace{0.05cm}bit/Symbol} \hspace{0.05cm}; $$
Grüne Zahlenwerte:  Erforderliches  $10 · \lg (E_{\rm B}/N_0)$  in  „dB” für  Ordinate  $C = 0,\ 1$,  ... ,  $5$  in „bit/Symbol”.
Die ausführliche  $C(E_{\rm B}/N_0)$–Berechnung finden Sie in der  Aufgabe 4.8  und der zugehörigen Musterlösung.


Im Folgenden interpretieren wir das (grüne)  $C(E_{\rm B}/N_0)$–Ergebnis im Vergleich zur (roten)  $C(E_{\rm S}/N_0)$–Kurve:

  • Wegen  $E_{\rm S} = R · E_{\rm B}$  liegt der Schnittpunkt beider Kurven bei  $C (= R) = 1$  bit/Symbol.  Erforderlich sind  $10 · \lg (E_{\rm S}/N_0) = 1.76$  dB  bzw.  $10 · \lg (E_{\rm B}/N_0) = 1.76$  dB gleichermaßen.
  • Im Bereich  $C > 1$  liegt die grüne Kurve stets über der roten.  Beispielsweise ergibt sich für  $10 · \lg (E_{\rm B}/N_0) = 20$  dB die Kanalkapazität  $C ≈ 5$, für  $10 · \lg (E_{\rm S}/N_0) = 20$  dB  nur  $C = 3.83$.
  • Ein Vergleich in horizontaler Richtung zeigt, dass die Kanalkapazität  $C = 3$  bit/Symbol schon mit  $10 · \lg (E_{\rm B}/N_0) \approx 10$  dB erreichbar ist, man aber  $10 · \lg (E_{\rm S}/N_0) \approx 15$  dB benötigt.
  • Im Bereich  $C < 1$  liegt die rote Kurve stets über der grünen.  Für jedes  $E_{\rm S}/N_0 > 0$  gilt  $C > 0$.  Bei logarithmischer Abszisse wie in der vorliegenden Darstellung reicht somit die rote Kurve bis ins „Minus–Unendliche”.
  • Dagegen endet die grüne Kurve bei  $E_{\rm B}/N_0 = \ln (2) = 0.693$   ⇒   $10 · \lg (E_{\rm B}/N_0)= -1.59$  dB   ⇒   absolute Grenze für die (fehlerfreie) Übertragung über den AWGN–Kanal.


AWGN–Kanalkapazität für binäre Eingangssignale


Zur Berechnung der AWGN–Kanalkapazität für BPSK

Auf den bisherigen Seiten dieses Kapitels wurde stets gemäß der Shannon–Theorie von einem gaußverteilten, also wertkontinuierlichen AWGN–Eingang  $X$  ausgegangen. 

Nun betrachten wir den binären Fall und werden somit erst jetzt der Kapitel–Überschrift „AWGN–Kanalkapazität bei wertdiskretem Eingang” gerecht.

Die Grafik zeigt das zugrundeliegende Blockschaltbild für  Binary Phase Shift Keying  $\rm (BPSK)$  mit binärem Eingang  $U$  und binärem Ausgang  $V$. 

Durch die bestmögliche Codierung soll erreicht werden, dass die Bitfehlerwahrscheinlichkeit  $\text{Pr}(V ≠ U)$  verschwindend klein wird.

  • Der Coderausgang ist gekennzeichnet durch die binäre Zufallsgröße  $X \hspace{0.03cm}' = \{0, 1\}$   ⇒   $M_{X'} = 2$, während der Ausgang  $Y$  des AWGN–Kanals weiterhin wertkontinuierlich ist:   $M_Y → ∞$.
  • Durch das Mapping  $X = 1 - 2X\hspace{0.03cm} '$  kommt man von der unipolaren Darstellung zu der für BPSK besser geeigneten bipolaren (antipodalen) Beschreibung:   $X\hspace{0.03cm} ' = 0 → \ X = +1; \hspace{0.5cm} X\hspace{0.03cm} ' = 1 → X = -1$.
Bedingte WDF für  $X=-1$  (rot)  und  $X=+1$  (blau)
  • Der AWGN–Kanal wird durch zwei bedingte Wahrscheinlichkeitsdichtefunktionen charakterisiert:
$$f_{Y\hspace{0.05cm}|\hspace{0.03cm}{X}}(y\hspace{0.05cm}|\hspace{0.03cm}{X}=+1) =\frac{1}{\sqrt{2\pi\sigma^2}} \cdot {\rm e}^{-{(y - 1)^2}/(2 \sigma^2)} \hspace{0.05cm}\hspace{0.05cm},\hspace{0.5cm}\text{Kurzform:} \ \ f_{Y\hspace{0.05cm}|\hspace{0.03cm}{X}}(y\hspace{0.05cm}|\hspace{0.03cm}+1)\hspace{0.05cm},$$
$$f_{Y\hspace{0.05cm}|\hspace{0.03cm}{X}}(y\hspace{0.05cm}|\hspace{0.03cm}{X}=-1) =\frac{1}{\sqrt{2\pi\sigma^2}} \cdot {\rm e}^{-{(y + 1)^2}/(2 \sigma^2)} \hspace{0.05cm}\hspace{0.05cm},\hspace{0.5cm}\text{Kurzform:} \ \ f_{Y\hspace{0.05cm}|\hspace{0.03cm}{X}}(y\hspace{0.05cm}|\hspace{0.03cm}-1)\hspace{0.05cm}.$$
  • Da hier das Nutzsignal  $X$  auf  $±1$  normiert ist   ⇒   Leistung  $1$  anstelle von  $P_X$,  muss die Varianz des AWGN–Rauschens  $N$  in gleicher Weise normiert werden:   $σ^2 = P_N/P_X$.
  • Der Empfänger trifft aus der reellwertigen Zufallsgröße  $Y$  (am AWGN–Kanalausgang) eine  Maximum–Likelihood–Entscheidung.  Der Empfängerausgang  $V$  ist binär  $(0$  oder  $1)$.


Ausgehend von diesem Modell berechnen wir nun die Kanalkapazität des AWGN–Kanals.

Diese lautet bei einer binären Eingangsgröße  $X$  allgemein unter Berücksichtigung von  $\text{Pr}(X = -1) = 1 - \text{Pr}(X = +1)$:

$$C_{\rm BPSK} = \max_{ {\rm Pr}({X} =+1)} \hspace{-0.15cm} I(X;Y) \hspace{0.05cm}.$$

Aufgrund des symmetrischen Kanals ist offensichtlich, dass die Eingangswahrscheinlichkeiten

$${\rm Pr}(X =+1) = {\rm Pr}(X =-1) = 0.5 $$

zum Optimum führen werden.  Gemäß der Seite  Transinformationsberechnung bei additiver Störung  gibt es mehrere Berechnungsmöglichkeiten:

$$ \begin{align*}C_{\rm BPSK} & = h(X) + h(Y) - h(XY)\hspace{0.05cm},\\ C_{\rm BPSK} & = h(Y) - h(Y|X)\hspace{0.05cm},\\ C_{\rm BPSK} & = h(X) - h(X|Y)\hspace{0.05cm}. \end{align*}$$

Alle Ergebnisse sind noch um die Pseudo–Einheit „bit/Kanalzugriff” zu ergänzen. 

Die Kanalkapazitätsgrenzen  $C_{\rm BPSK}$  und  $C_{\rm Gauß}$  im Vergleich

Wir wählen hier die mittlere Gleichung:

  • Die hierfür benötigte bedingte differentielle Entropie ist gleich
$$h(Y\hspace{0.03cm}|\hspace{0.03cm}X) = h(N) = 1/2 \cdot {\rm log}_2 \hspace{0.1cm}(2\pi{\rm e}\cdot \sigma^2) \hspace{0.05cm}. $$
  • Die differentielle Entropie  $h(Y)$  ist vollständig durch die WDF  $f_Y(y)$  gegeben.  Mit den vorne definierten und skizzierten bedingten Wahrscheinlichkeitsdichtefunktionen erhält man:
$$f_Y(y) = {1}/{2} \cdot \big [ f_{Y\hspace{0.03cm}|\hspace{0.03cm}{X}}(y\hspace{0.05cm}|\hspace{0.05cm}{X}=-1) + f_{Y\hspace{0.03cm}|\hspace{0.03cm}{X}}(y\hspace{0.05cm}|\hspace{0.05cm}{X}=+1) \big ]$$
$$\Rightarrow \hspace{0.3cm} h(Y) \hspace{-0.01cm}=\hspace{0.05cm} -\hspace{-0.7cm} \int\limits_{y \hspace{0.05cm}\in \hspace{0.05cm}{\rm supp}(f_Y)} \hspace{-0.65cm} f_Y(y) \cdot {\rm log}_2 \hspace{0.1cm} [f_Y(y)] \hspace{0.1cm}{\rm d}y \hspace{0.05cm}.$$

Es ist offensichtlich, dass  $h(Y)$  nur durch numerische Integration ermittelt werden kann, insbesondere, wenn man berücksichtigt, dass sich  $f_Y(y)$  im Überlappungsbereich aus der Summe der beiden bedingten Gauß–Funktionen ergibt.

In der obigen Grafik sind über der Abszisse  $10 · \lg (E_{\rm B}/N_0)$  drei Kurven dargestellt:

  • die blau gezeichnete Kanalkapazität  $C_{\rm Gauß}$, gültig für eine Gaußsche Eingangsgröße  $X$   ⇒   $M_X → ∞$,
  • die grün gezeichnete Kanalkapazität  $C_{\rm BPSK}$  für die Zufallsgröße  $X = (+1, –1)$, sowie
  • die mit „BPSK ohne Codierung” bezeichnete rote Horizontale.


Diese Kurvenverläufe sind wie folgt zu interpretieren:

  • Die grüne Kurve  $C_{\rm BPSK}$  gibt die maximal zulässige Coderate  $R$  von  "Binary Phase Shift Keying"  (BPSK) an, bei der für das gegebene  $E_{\rm B}/N_0$  durch bestmögliche Codierung die Bitfehlerwahrscheinlichkeit  $p_{\rm B} \equiv 0$  möglich ist.
  • Für alle BPSK–Systeme mit den Koordinaten  $(10 · \lg \ E_{\rm B}/N_0, \ R)$  im „grünen Bereich” ist   $p_{\rm B} \equiv 0$   prinzipiell erreichbar.  Aufgabe der Nachrichtentechniker ist es, hierfür geeignete Codes zu finden.
  • Die BPSK–Kurve liegt stets unter der absoluten Shannon–Grenzkurve  $C_{\rm Gauß}$  für  $M_X → ∞$ (blaue Kurve).  Im unteren Bereich gilt  $C_{\rm BPSK} ≈ C_{\rm Gauß}$.  Zum Beispiel muss ein BPSK–System mit  $R = 1/2$  nur ein um  $0.1\ \rm dB$  größeres  $E_{\rm B}/N_0$  bereitstellen, als es die (absolute) Kanalkapazität  $C_{\rm Gauß}$  fordert.
  • Ist  $E_{\rm B}/N_0$  endlich, so gilt stets  $C_{\rm BPSK} < 1$   ⇒   siehe  Aufgabe 4.9Z.  Eine BPSK mit  $R = 1$  (und somit ohne Codierung) wird also stets eine Bitfehlerwahrscheinlichkeit  $p_{\rm B} > 0$  zur Folge haben.
  • Die Fehlerwahrscheinlichkeiten eines solchen BPSK–Systems ohne Codierung  $($mit  $R = 1)$  sind auf der roten Horizontalen angegeben.  Um  $p_{\rm B} ≤ 10^{–5}$  zu erreichen, benötigt man demnach mindestens  $10 · \lg (E_{\rm B}/N_0) = 9.6\ \rm dB$.
  • Diese Wahrscheinlichkeiten ergeben sich gemäß dem Kapitel  Fehlerwahrscheinlichkeit des optimalen BPSK-Systems  im Buch „Digitalsignalübertragung” zu
$$p_{\rm B} = {\rm Q} \left ( \sqrt{S \hspace{-0.06cm}N\hspace{-0.06cm}R}\right ) \hspace{0.45cm} {\rm mit } \hspace{0.45cm} S\hspace{-0.06cm}N\hspace{-0.06cm}R = 2\cdot E_{\rm B}/{N_0} \hspace{0.05cm}. $$

Hinweise:

  • In obiger Grafik ist als zweite, zusätzliche Abszissenachse  $10 · \lg (SNR)$  eingezeichnet.  "SNR"  steht hierbei für  "Signal-to-Noise Ratio".
  • Die Funktion  ${\rm Q}(x)$  bezeichnet man als das  komplementäre Gaußsche Fehlerintegral.


Vergleich zwischen Theorie und Praxis


Anhand zweier Grafiken soll gezeigt werden, in wie weit sich etablierte Kanalcodes der BPSK–Kanalkapazität (grüne Kurve) annähern.  Als Ordinate aufgetragen ist die Rate  $R = k/n$  dieser Codes bzw. die Kapazität  $C$  (wenn noch die Pseudo–Einheit „bit/Kanalzugriff” hinzugefügt wird).

Vorausgesetzt ist:

  • der AWGN–Kanal, gekennzeichnet durch  $10 · \lg (E_{\rm B}/N_0)$ in dB, und
  • für die durch Kreuze markierten realisierten Codes eine  Bitfehlerrate  $\rm (BER)$  von  $10^{–5}$.


Zu beachten ist, dass die Kanalkapazitätskurven stets für  $n → ∞$  und  $\rm BER \equiv 0$  gelten.

  • Würde man die strenge Forderung „fehlerfrei” auch an die Kanalcodes endlicher Codelänge  $n$  anlegen, so wäre hierfür stets  $10 · \lg \ (E_{\rm B}/N_0) \to \infty$ erforderlich.
  • Dies ist aber ein eher akademisches Problem, also wenig praxisrelevant.  Für  $\text{BER} = 10^{–10}$  ergäbe sich eine qualitativ ähnliche Grafik.


$\text{Beispiel 4:}$  In der Grafik sind die Kenndaten von frühen Systemen mit Kanalcodierung und klassischer Decodierung angegeben. Es folgen einige Erläuterungen zu den Daten, die der Vorlesung  [Liv10][1]  entnommen wurden.  Die Links bei diesen Erläuterungen beziehen sich oft auf das  $\rm LNTwww$–Buch Kanalcodierung.

Raten und erforderliches  $E_{\rm B}/{N_0}$  verschiedener Kanalcodes
  • Die Punkte  $\rm A$,  $\rm B$  und  $\rm C$  markieren  Hamming–Codes  der Raten  $R = 4/7 ≈ 0.57$,  $R ≈ 0.73$  bzw.  $R ≈ 0.84$.  Für $\text{BER} = 10^{–5}$  benötigen diese sehr frühen Codes  (aus dem Jahr 1950)  alle  $10 · \lg (E_{\rm B}/N_0) > 8\ \rm dB$.
  • Die Markierung  $\rm D$  kennzeichnet den binären  Golay–Code  mit der Rate  $R = 1/2$  und der Punkt  $\rm E$  einen  Reed–Muller–Code.  Dieser sehr niederratige Code kam bereits 1971 bei der  Raumsonde Mariner 9  zum Einsatz.
  • Die  Reed–Solomon–Codes  (RS–Codes, ca. 1960)  sind eine Klasse zyklischer Blockcodes.  $\rm F$ markiert einen RS–Code der Rate  $223/255 \approx 0.875$  und einem erforderlichen  $E_{\rm B}/N_0 < 6 \ \rm dB$.
  • $\rm G$  und  $\rm H$  bezeichnen zwei  Faltungscodes  $($englisch:  "Convolutional Codes",  $\rm CC)$  mittlerer Rate.  Der Code  $\rm G$  wurde schon 1972 bei der  Pioneer 10–Mission  eingesetzt.
  • Die Kanalcodierung der  Voyager–Mission  Ende der 1970er Jahre ist mit  $\rm I$  markiert. Es handelt sich um die  Verkettung  eines  $\text{(2, 1, 7)}$–Faltungscodes mit einem Reed–Solomon–Code.


Anzumerken ist, dass bei den Faltungscodes der dritte Kennungsparameter eine andere Bedeutung hat als bei den Blockcodes.  So weist beispielsweise die Kennung  $\text{(2, 1, 32)}$  auf das Memory  $m = 32$  hin.


Raten und erforderliches  $E_{\rm B}/{N_0}$  für iterative Codierverfahren

$\text{Beispiel 5:}$  Die im  $\text{Beispiel 4}$  genannten frühen Kanalcodes liegen noch relativ weit von der Kanalkapazitätskurve entfernt. 

Dies war wahrscheinlich auch ein Grund, warum dem Autor dieses Lerntutorials die auch große praktische Bedeutung der Informationstheorie verschlossen blieb, als er diese Anfang der 1970er Jahre im Studium kennengelernt hat.

Die Sichtweise hat sich deutlich verändert, als in den 1990er Jahren sehr lange Kanalcodes zusammen mit iterativer Decodierung aufkamen.  Die neuen Markierungspunkte liegen deutlich näher an der Kapazitätsgrenzkurve.
Hier noch einige Erläuterungen zu dieser Grafik:

  • Rote Kreuze markieren die so genannten  Turbo–Codes  nach  $\rm CCSDS$  ("Consultative Committee for Space Data Systems")  mit jeweils  $k = 6920$  Informationsbit und unterschiedlichen Codelängen  $n = k/R$.  Diese von  Claude Berrou  um 1990 erfundenen Codes können iterativ decodiert werden.  Die (roten) Markierungen liegen jeweils weniger als  $1 \ \rm dB$  von der Shannon–Grenze entfernt.
  • Ähnlich verhalten sich die  LDPC–Codes  ("Low Density Parity–check Codes")  mit konstanter Codelänge  $n = 64800$   ⇒   weiße Rechtecke.  Sie werden seit 2006 bei  DVB–S2  ("Digital Video Broadcast over Satellite")  eingesetzt und eignen sich aufgrund der spärlichen Einsen–Belegung der Prüfmatrix sehr gut für die iterative Decodierung mittels  Faktor–Graphen  und  Exit Charts.
  • Schwarze Punkte markieren die von  $\rm CCSDS$  spezifizierten  LDPC–Codes  mit konstanter Anzahl an Informationsbits  $(k = 16384)$  und variabler Wortlänge  $n = k/R$.  Diese Codeklasse erfordert ein ähnliches  $E_{\rm B}/N_0$  wie die roten Kreuze und die weißen Rechtecke.
  • Um das Jahr 2000 hatten viele Forscher den Ehrgeiz, sich der Shannon–Grenze bis auf Bruchteile von einem  $\rm dB$  anzunähern.  Das gelbe Kreuz markiert ein solches Ergebnis  $(0.0045 \ \rm dB)$  von  [CFRU01][2]  mit einem irregulären LDPC–Code der Rate  $ R =1/2$  und der Länge  $n = 10^7$.


$\text{Fazit:}$  An dieser Stelle soll nochmals die Brillanz und der Weitblick von  Claude E. Shannon  hervorgehoben werden:

  • Er hat 1948 eine bis dahin nicht bekannte Theorie entwickelt, mit der die Möglichkeiten, aber auch die Grenzen der Digitalsignalübertragung aufgezeigt werden.
  • Zu dieser Zeit waren die ersten Überlegungen zur digitalen Nachrichtenübertragung gerade mal zehn Jahre alt   ⇒   Pulscodemodulation  (Alec Reeves, 1938) und selbst der Taschenrechner kam erst mehr als zwanzig Jahre später.
  • Shannon's Arbeiten zeigen uns, dass man auch ohne gigantische Computer Großes leisten kann.


Kanalkapazität des komplexen AWGN–Kanals


Höherstufige Modulationsverfahren können jeweils durch eine Inphase– und eine Quadraturkomponente dargestellt werden.  Hierzu gehören zum Beispiel

  • die  M–QAM    ⇒   Quadraturamplitudenmodulation;  $M ≥ 4$  quadratisch angeordnete Signalraumpunkte,
  • die  M–PSK   ⇒   $M ≥ 4$  Signalraumpunkte in kreisförmiger Anordnung.


Die beiden Komponenten lassen sich im  äquivalenten Tiefpassbereich  auch als  Realteil  bzw. Imaginärteil  eines komplexen Rauschterms  $N$  beschreiben.

  • Alle oben genannten Verfahren sind zweidimensional.
  • Der (komplexe) AWGN–Kanal stellt somit  $K = 2$  voneinander unabhängige Gaußkanäle zur Verfügung.
  • Entsprechend der Seite  Parallele Gaußsche Kanäle  ergibt sich deshalb für die Kapazität eines solchen Kanals:
2D–WDF des komplexen
Gaußschen Rauschens
$$C_{\text{ Gauß, komplex} }= C_{\rm Gesamt} ( K=2) = {\rm log}_2 \hspace{0.1cm} ( 1 + \frac{P_X/2}{\sigma^2}) \hspace{0.05cm}.$$
  • $P_X$  bezeichnet die gesamte Nutzleistung von Inphase– und Quadraturkomponente.
  • Dagegen bezieht sich die Varianz  $σ^2$  der Störung nur auf eine Dimension:   $σ^2 = σ_{\rm I}^2 = σ_{\rm Q}^2$.


Die Skizze zeigt die 2D–WDF  $f_N(n)$  des Gaußschen Rauschprozesses  $N$  über den beiden Achsen

  • $N_{\rm I}$  (Inphase–Anteil, Realteil) und
  • $N_{\rm Q}$  (Quadraturanteil, Imaginärteil).


Dunklere Bereiche der rotationssymmetrischen WDF  $f_N(n)$  um den Nullpunkt weisen auf mehr Störanteile hin.  Für die Varianz des komplexen Gaußschen Rauschens  $N$  gilt aufgrund der Rotationsinvarianz  $(σ_{\rm I} = σ_{\rm Q})$  folgender Zusammenhang:

$$\sigma_N^2 = \sigma_{\rm I}^2 + \sigma_{\rm Q}^2 = 2\cdot \sigma^2 \hspace{0.05cm}.$$

Damit lässt sich die Kanalkapazität auch wie folgt ausdrücken:

$$C_{\text{ Gauß, komplex} }= {\rm log}_2 \hspace{0.1cm} ( 1 + \frac{P_X}{\sigma_N^2}) = {\rm log}_2 \hspace{0.1cm} ( 1 + SNR) \hspace{0.05cm}.$$

Die Gleichung wird auf der nächsten Seite numerisch ausgewertet.  Man kann aber jetzt schon sagen, dass für das Signal–zu–Störleistungsverhältnis gelten wird:

$$SNR = {P_X}/{\sigma_N^2} \hspace{0.05cm}.$$

Maximale Coderate für QAM–Strukturen


Kanalkapazität von BPSK und  $M$–QAM

Die Grafik zeigt die Kapazität des komplexen AWGN–Kanals als rote Kurve:

$$C_{\text{ Gauß, komplex} }= {\rm log}_2 \hspace{0.1cm} ( 1 + SNR) \hspace{0.05cm}.$$
  • Die Einheit dieser Kanalkapazität ist „bit/Kanalzugriff” oder „bit/Quellensymbol”.
  • Die Abszisse bezeichnet das Signal–zu–Störleistungsverhältnis  $10 · \lg (SNR)$  mit  ${SNR} = P_X/σ_N^2$.
  • Die Grafik wurde  [Göb10][3]  entnommen.  Wir danken unserem ehemaligen Kollegen  Bernhard Göbel,  für sein Einverständnis, diese Abbildung verwenden zu dürfen, sowie für die große Unterstützung unseres Lerntutorials während seiner gesamten aktiven Zeit.


Die rote Kurve basiert entsprechend der Shannon–Theorie wieder auf einer Gaußverteilung  $f_X(x)$  am Eingang.  Zusätzlich eingezeichnet sind zehn weitere Kapazitätskurven für wertdiskreten Eingang:


Man erkennt aus dieser Darstellung:

  • Alle Kurven  (BPSK und  $M$–QAM)  liegen rechts von der roten Shannon–Grenzkurve.  Bei kleinem  $SNR$  sind diese Kurven von der roten Kurve fast nicht unterscheidbar.
  • Der Endwert aller Kurven für wertdiskreten Eingang ist  $K = \log_2 (M)$.  Für  $SNR \to ∞$  erhält man  $C_{\rm BPSK} = 1$  (bit/Kanalzugriff)  sowie  $C_{\rm 4-QAM} = C_{\rm QPSK} = 2$.
  • Die blauen Markierungen zeigen, dass eine  $\rm 2^{10}–QAM$  mit  $10 · \lg (SNR) ≈ 27 \ \rm dB$  eine Coderate von  $R ≈ 8.2$  ermöglicht.  Abstand zur Shannon–Kurve:  $1.53\ \rm dB$.
  • Der  "Shaping Gain"  beträgt demnach  $10 · \lg (π \cdot {\rm e}/6) = 1.53 \ \rm dB$.  Diese Verbesserung lässt sich erzielen, wenn man die Lage der  $2^{10} = 32^2$  quadratisch angeordneten Signalraumpunkte so ändert, dass sich eine gaußähnliche Eingangs–WDF ergibt   ⇒  "Signal Shaping".


$\text{Fazit:}$  In der  Aufgabe 4.10  werden die AWGN–Kapazitätskurven von BPSK und QPSK diskutiert:

  • Ausgehend von der Abszisse  $10 · \lg (E_{\rm B}/N_0)$  mit  $E_{\rm B}$  (Energie pro Informationsbit)  kommt man zur QPSK–Kurve durch Verdopplung der BPSK–Kurve:
$$C_{\rm QPSK}\big [10 \cdot {\rm lg} \hspace{0.1cm}(E_{\rm B}/{N_0})\big ] = 2 \cdot C_{\rm BPSK}\big [10 \cdot {\rm lg} \hspace{0.1cm}(E_{\rm B}/{N_0}) \big ] .$$
  • Vergleicht man aber BPSK und QPSK bei gleicher Energie  $E_{\rm S}$  pro Informationssymbol, so gilt:
$$C_{\rm QPSK}[10 \cdot {\rm lg} \hspace{0.1cm}(E_{\rm S}/{N_0})] = 2 \cdot C_{\rm BPSK}[10 \cdot {\rm lg} \hspace{0.1cm}(E_{\rm S}/{N_0}) - 3\,{\rm dB}] .$$
Hierbei ist berücksichtigt, dass bei QPSK die Energie in einer Dimension nur  $E_{\rm S}/2$  beträgt.

Aufgaben zum Kapitel


Aufgabe 4.8: Numerische Auswertung der AWGN-Kanalkapazität

Aufgabe 4.8Z: Was sagt die AWGN-Kanalkapazitätskurve aus?

Aufgabe 4.9: Höherstufige Modulation

Aufgabe 4.9Z: Ist bei BPSK die Kanalkapazität $C ≡ 1$ möglich?

Aufgabe 4.10:   QPSK–Kanalkapazität

Quellenverzeichnis

  1. Liva, G.:  Channel Coding. Vorlesungsmanuskript, Lehrstuhl für Nachrichtentechnik, TU München und DLR Oberpfaffenhofen, 2010.
  2. Chung S.Y; Forney Jr., G.D.; Richardson, T.J.; Urbanke, R.: On the Design of Low-Density Parity- Check Codes within 0.0045 dB of the Shannon Limit. –
    In: IEEE Communications Letters, vol. 5, no. 2 (2001), pp. 58–60.
  3. Göbel, B.:  Information–Theoretic Aspects of Fiber–Optic Communication Channels. Dissertation. TU München.
    Verlag Dr. Hut, Reihe Informationstechnik, ISBN 978-3-86853-713-0, 2010.