Aufgaben zu Stochastische Signaltheorie
A1.2 Schaltlogik (D/B-Wandler)
Ein Zahlengenerator $Z$ liefert Dezimalwerte im Bereich von 1 bis 15. Diese werden in Binärzahlen umgewandelt (rot umrandeter Block). Der Ausgang besteht aus den vier Binärwerten $A$, $B$, $C$ und $D$ mit abnehmender Wertigkeit. Beispielsweise liefert $Z = 11$ die Binärwerte $$ A = 1, B = 0, C = 1, D = 1. $$ Mengentheoretisch lässt sich dies wie folgt darstellen: $$ Z = 11\qquad\widehat{=}\qquad A \cap\bar{ B} \cap C \cap D$$ Aus den binären Größen A, B, C und D werden drei weitere Boolsche Ausdrücke gebildet, deren Vereinigungsmenge mit X bezeichnet wird: \[ U = A \cap \bar{D} \] \[ V = \bar{A} \cap B \cap \bar{D} \] $$W, wobei \, \bar{W} = \bar{A} \cup \bar{D} \cup (\bar{B} \cap C) \cup (B \cap \bar{C}). $$ Für die folgenden Fragen ist zu berücksichtigen, dass $Z = 0 ⇒ A = B = C = D = 0$ bereits durch den Zahlengenerator ausgeschlossen ist. Beachten Sie ferner, dass nicht alle Eingangsgrößen $A$, $B$, $C$ und $D$ zur Berechnung aller Zwischengrößen $U$, $V$ und $W$ herangezogen werden. Hinweis: Diese Aufgabe bezieht sich auf den Lehrstoff von Kapitel 1.2. Eine Zusammenfassung der theoretischen Grundlagen mit Beispielen bringt das nachfolgende Lernvideo:
Fragebogen zu "A1.2 Schaltlogik (D/B-Wandler)"
Musterlösung
Seiten in der Kategorie „Aufgaben zu Stochastische Signaltheorie“
Folgende 93 Seiten sind in dieser Kategorie, von 93 insgesamt.